Do you want to publish a course? Click here

Experimental Characterization of Crosstalk Errors with Simultaneous Gate Set Tomography

177   0   0.0 ( 0 )
 Added by Kevin Young
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Crosstalk is a leading source of failure in multiqubit quantum information processors. It can arise from a wide range of disparate physical phenomena, and can introduce subtle correlations in the errors experienced by a device. Several hardware characterization protocols are able to detect the presence of crosstalk, but few provide sufficient information to distinguish various crosstalk errors from one another. In this article we describe how gate set tomography, a protocol for detailed characterization of quantum operations, can be used to identify and characterize crosstalk errors in quantum information processors. We demonstrate our methods on a two-qubit trapped-ion processor and a two-qubit subsystem of a superconducting transmon processor.



rate research

Read More

Gate set tomography (GST) is a protocol for detailed, predictive characterization of logic operations (gates) on quantum computing processors. Ear
Mid-circuit measurement and reset are crucial primitives in quantum computation, but such operations require strong interactions with selected qubits while maintaining isolation of neighboring qubits, which is a significant challenge in many systems. For trapped ion systems, measurement is performed with laser-induced fluorescence. Stray light from the detection beam and fluorescence from the measured ions can be significant sources of decoherence for unmeasured qubits. We present a technique using ion micromotion to reduce these sources of decoherence by over an order of magnitude. We benchmark the performance with a new method, based on randomized benchmarking, to estimate the magnitude of crosstalk errors on nearby qubits. Using the Honeywell System Model H0, we demonstrate measurement and reset on select qubits with low crosstalk errors on neighboring qubits.
Benchmarking and characterising quantum states and logic gates is essential in the development of devices for quantum computing. We introduce a Bayesian approach to self-consistent process tomography, called fast Bayesian tomography (FBT), and experimentally demonstrate its performance in characterising a two-qubit gate set on a silicon-based spin qubit device. FBT is built on an adaptive self-consistent linearisation that is robust to model approximation errors. Our method offers several advantages over other self-consistent tomographic methods. Most notably, FBT can leverage prior information from randomised benchmarking (or other characterisation measurements), and can be performed in real time, providing continuously updated estimates of full process matrices while data is acquired.
Crosstalk occurs in most quantum computing systems with more than one qubit. It can cause a variety of correlated and nonlocal crosstalk errors that can be especially harmful to fault-tolerant quantum error correction, which generally relies on errors being local and relatively predictable. Mitigating crosstalk errors requires understanding, modeling, and detecting them. In this paper, we introduce a comprehensive framework for crosstalk errors and a protocol for detecting and localizing them. We give a rigorous definition of crosstalk errors that captures a wide range of disparate physical phenomena that have been called crosstalk, and a concrete model for crosstalk-free quantum processors. Errors that violate this model are crosstalk errors. Next, we give an equivalent but purely operational (model-independent) definition of crosstalk errors. Using this definition, we construct a protocol for detecting a large class of crosstalk errors in a multi-qubit processor by finding conditional dependencies between observed experimental probabilities. It is highly efficient, in the sense that the number of unique experiments required scales at most cubically, and very often quadratically, with the number of qubits. We demonstrate the protocol using simulations of 2-qubit and 6-qubit processors.
Measurements that occur within the internal layers of a quantum circuit -- mid-circuit measurements -- are an important quantum computing primitive, most notably for quantum error correction. Mid-circuit measurements have both classical and quantum outputs, so they can be subject to error modes that do not exist for measurements that terminate quantum circuits. Here we show how to characterize mid-circuit measurements, modelled by quantum instruments, using a technique that we call quantum instrument linear gate set tomography (QILGST). We then apply this technique to characterize a dispersive measurement on a superconducting transmon qubit within a multiqubit system. By varying the delay time between the measurement pulse and subsequent gates, we explore the impact of residual cavity photon population on measurement error. QILGST can resolve different error modes and quantify the total error from a measurement; in our experiment, for delay times above 1000 ns we measured a total error rate (i.e., half diamond distance) of $epsilon_{diamond} = 8.1 pm 1.4 %$, a readout fidelity of $97.0 pm 0.3%$, and output quantum state fidelities of $96.7 pm 0.6%$ and $93.7 pm 0.7%$ when measuring $0$ and $1$, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا