Do you want to publish a course? Click here

SOGAN: 3D-Aware Shadow and Occlusion Robust GAN for Makeup Transfer

353   0   0.0 ( 0 )
 Added by Yueming Lyu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In recent years, virtual makeup applications have become more and more popular. However, it is still challenging to propose a robust makeup transfer method in the real-world environment. Current makeup transfer methods mostly work well on good-conditioned clean makeup images, but transferring makeup that exhibits shadow and occlusion is not satisfying. To alleviate it, we propose a novel makeup transfer method, called 3D-Aware Shadow and Occlusion Robust GAN (SOGAN). Given the source and the reference faces, we first fit a 3D face model and then disentangle the faces into shape and texture. In the texture branch, we map the texture to the UV space and design a UV texture generator to transfer the makeup. Since human faces are symmetrical in the UV space, we can conveniently remove the undesired shadow and occlusion from the reference image by carefully designing a Flip Attention Module (FAM). After obtaining cleaner makeup features from the reference image, a Makeup Transfer Module (MTM) is introduced to perform accurate makeup transfer. The qualitative and quantitative experiments demonstrate that our SOGAN not only achieves superior results in shadow and occlusion situations but also performs well in large pose and expression variations.

rate research

Read More

In this paper, we address the problem of makeup transfer, which aims at transplanting the makeup from the reference face to the source face while preserving the identity of the source. Existing makeup transfer methods have made notable progress in generating realistic makeup faces, but do not perform well in terms of color fidelity and spatial transformation. To tackle these issues, we propose a novel Facial Attribute Transformer (FAT) and its variant Spatial FAT for high-quality makeup transfer. Drawing inspirations from the Transformer in NLP, FAT is able to model the semantic correspondences and interactions between the source face and reference face, and then precisely estimate and transfer the facial attributes. To further facilitate shape deformation and transformation of facial parts, we also integrate thin plate splines (TPS) into FAT, thus creating Spatial FAT, which is the first method that can transfer geometric attributes in addition to color and texture. Extensive qualitative and quantitative experiments demonstrate the effectiveness and superiority of our proposed FATs in the following aspects: (1) ensuring high-fidelity color transfer; (2) allowing for geometric transformation of facial parts; (3) handling facial variations (such as poses and shadows) and (4) supporting high-resolution face generation.
137 - Si Liu , Wentao Jiang , Chen Gao 2021
In this paper, we address the makeup transfer and removal tasks simultaneously, which aim to transfer the makeup from a reference image to a source image and remove the makeup from the with-makeup image respectively. Existing methods have achieved much advancement in constrained scenarios, but it is still very challenging for them to transfer makeup between images with large pose and expression differences, or handle makeup details like blush on cheeks or highlight on the nose. In addition, they are hardly able to control the degree of makeup during transferring or to transfer a specified part in the input face. In this work, we propose the PSGAN++, which is capable of performing both detail-preserving makeup transfer and effective makeup removal. For makeup transfer, PSGAN++ uses a Makeup Distill Network to extract makeup information, which is embedded into spatial-aware makeup matrices. We also devise an Attentive Makeup Morphing module that specifies how the makeup in the source image is morphed from the reference image, and a makeup detail loss to supervise the model within the selected makeup detail area. On the other hand, for makeup removal, PSGAN++ applies an Identity Distill Network to embed the identity information from with-makeup images into identity matrices. Finally, the obtained makeup/identity matrices are fed to a Style Transfer Network that is able to edit the feature maps to achieve makeup transfer or removal. To evaluate the effectiveness of our PSGAN++, we collect a Makeup Transfer In the Wild dataset that contains images with diverse poses and expressions and a Makeup Transfer High-Resolution dataset that contains high-resolution images. Experiments demonstrate that PSGAN++ not only achieves state-of-the-art results with fine makeup details even in cases of large pose/expression differences but also can perform partial or degree-controllable makeup transfer.
Monocular 3D object parsing is highly desirable in various scenarios including occlusion reasoning and holistic scene interpretation. We present a deep convolutional neural network (CNN) architecture to localize semantic parts in 2D image and 3D space while inferring their visibility states, given a single RGB image. Our key insight is to exploit domain knowledge to regularize the network by deeply supervising its hidden layers, in order to sequentially infer intermediate concepts associated with the final task. To acquire training data in desired quantities with ground truth 3D shape and relevant concepts, we render 3D object CAD models to generate large-scale synthetic data and simulate challenging occlusion configurations between objects. We train the network only on synthetic data and demonstrate state-of-the-art performances on real image benchmarks including an extended version of KITTI, PASCAL VOC, PASCAL3D+ and IKEA for 2D and 3D keypoint localization and instance segmentation. The empirical results substantiate the utility of our deep supervision scheme by demonstrating effective transfer of knowledge from synthetic data to real images, resulting in less overfitting compared to standard end-to-end training.
Occlusion removal is an interesting application of image enhancement, for which, existing work suggests manually-annotated or domain-specific occlusion removal. No work tries to address automatic occlusion detection and removal as a context-aware generic problem. In this paper, we present a novel methodology to identify objects that do not relate to the image context as occlusions and remove them, reconstructing the space occupied coherently. The proposed system detects occlusions by considering the relation between foreground and background object classes represented as vector embeddings, and removes them through inpainting. We test our system on COCO-Stuff dataset and conduct a user study to establish a baseline in context-aware automatic occlusion removal.
Conventional video inpainting is neither object-oriented nor occlusion-aware, making it liable to obvious artifacts when large occluded object regions are inpainted. This paper presents occlusion-aware video object inpainting, which recovers both the complete shape and appearance for occluded objects in videos given their visible mask segmentation. To facilitate this new research, we construct the first large-scale video object inpainting benchmark YouTube-VOI to provide realistic occlusion scenarios with both occluded and visible object masks available. Our technical contribution VOIN jointly performs video object shape completion and occluded texture generation. In particular, the shape completion module models long-range object coherence while the flow completion module recovers accurate flow with sharp motion boundary, for propagating temporally-consistent texture to the same moving object across frames. For more realistic results, VOIN is optimized using both T-PatchGAN and a new spatio-temporal attention-based multi-class discriminator. Finally, we compare VOIN and strong baselines on YouTube-VOI. Experimental results clearly demonstrate the efficacy of our method including inpainting complex and dynamic objects. VOIN degrades gracefully with inaccurate input visible mask.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا