Do you want to publish a course? Click here

PSGAN++: Robust Detail-Preserving Makeup Transfer and Removal

138   0   0.0 ( 0 )
 Added by Wentao Jiang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we address the makeup transfer and removal tasks simultaneously, which aim to transfer the makeup from a reference image to a source image and remove the makeup from the with-makeup image respectively. Existing methods have achieved much advancement in constrained scenarios, but it is still very challenging for them to transfer makeup between images with large pose and expression differences, or handle makeup details like blush on cheeks or highlight on the nose. In addition, they are hardly able to control the degree of makeup during transferring or to transfer a specified part in the input face. In this work, we propose the PSGAN++, which is capable of performing both detail-preserving makeup transfer and effective makeup removal. For makeup transfer, PSGAN++ uses a Makeup Distill Network to extract makeup information, which is embedded into spatial-aware makeup matrices. We also devise an Attentive Makeup Morphing module that specifies how the makeup in the source image is morphed from the reference image, and a makeup detail loss to supervise the model within the selected makeup detail area. On the other hand, for makeup removal, PSGAN++ applies an Identity Distill Network to embed the identity information from with-makeup images into identity matrices. Finally, the obtained makeup/identity matrices are fed to a Style Transfer Network that is able to edit the feature maps to achieve makeup transfer or removal. To evaluate the effectiveness of our PSGAN++, we collect a Makeup Transfer In the Wild dataset that contains images with diverse poses and expressions and a Makeup Transfer High-Resolution dataset that contains high-resolution images. Experiments demonstrate that PSGAN++ not only achieves state-of-the-art results with fine makeup details even in cases of large pose/expression differences but also can perform partial or degree-controllable makeup transfer.



rate research

Read More

In this paper, we address the problem of makeup transfer, which aims at transplanting the makeup from the reference face to the source face while preserving the identity of the source. Existing makeup transfer methods have made notable progress in generating realistic makeup faces, but do not perform well in terms of color fidelity and spatial transformation. To tackle these issues, we propose a novel Facial Attribute Transformer (FAT) and its variant Spatial FAT for high-quality makeup transfer. Drawing inspirations from the Transformer in NLP, FAT is able to model the semantic correspondences and interactions between the source face and reference face, and then precisely estimate and transfer the facial attributes. To further facilitate shape deformation and transformation of facial parts, we also integrate thin plate splines (TPS) into FAT, thus creating Spatial FAT, which is the first method that can transfer geometric attributes in addition to color and texture. Extensive qualitative and quantitative experiments demonstrate the effectiveness and superiority of our proposed FATs in the following aspects: (1) ensuring high-fidelity color transfer; (2) allowing for geometric transformation of facial parts; (3) handling facial variations (such as poses and shadows) and (4) supporting high-resolution face generation.
352 - Yueming Lyu , Jing Dong , Bo Peng 2021
In recent years, virtual makeup applications have become more and more popular. However, it is still challenging to propose a robust makeup transfer method in the real-world environment. Current makeup transfer methods mostly work well on good-conditioned clean makeup images, but transferring makeup that exhibits shadow and occlusion is not satisfying. To alleviate it, we propose a novel makeup transfer method, called 3D-Aware Shadow and Occlusion Robust GAN (SOGAN). Given the source and the reference faces, we first fit a 3D face model and then disentangle the faces into shape and texture. In the texture branch, we map the texture to the UV space and design a UV texture generator to transfer the makeup. Since human faces are symmetrical in the UV space, we can conveniently remove the undesired shadow and occlusion from the reference image by carefully designing a Flip Attention Module (FAM). After obtaining cleaner makeup features from the reference image, a Makeup Transfer Module (MTM) is introduced to perform accurate makeup transfer. The qualitative and quantitative experiments demonstrate that our SOGAN not only achieves superior results in shadow and occlusion situations but also performs well in large pose and expression variations.
In recent years, image and video surveillance have made considerable progresses to the Intelligent Transportation Systems (ITS) with the help of deep Convolutional Neural Networks (CNNs). As one of the state-of-the-art perception approaches, detecting the interested objects in each frame of video surveillance is widely desired by ITS. Currently, object detection shows remarkable efficiency and reliability in standard scenarios such as daytime scenes with favorable illumination conditions. However, in face of adverse conditions such as the nighttime, object detection loses its accuracy significantly. One of the main causes of the problem is the lack of sufficient annotated detection datasets of nighttime scenes. In this paper, we propose a framework to alleviate the accuracy decline when object detection is taken to adverse conditions by using image translation method. We propose to utilize style translation based StyleMix method to acquire pairs of day time image and nighttime image as training data for following nighttime to daytime image translation. To alleviate the detail corruptions caused by Generative Adversarial Networks (GANs), we propose to utilize Kernel Prediction Network (KPN) based method to refine the nighttime to daytime image translation. The KPN network is trained with object detection task together to adapt the trained daytime model to nighttime vehicle detection directly. Experiments on vehicle detection verified the accuracy and effectiveness of the proposed approach.
Facial makeup transfer is a widely-used technology that aims to transfer the makeup style from a reference face image to a non-makeup face. Existing literature leverage the adversarial loss so that the generated faces are of high quality and realistic as real ones, but are only able to produce fixed outputs. Inspired by recent advances in disentangled representation, in this paper we propose DMT (Disentangled Makeup Transfer), a unified generative adversarial network to achieve different scenarios of makeup transfer. Our model contains an identity encoder as well as a makeup encoder to disentangle the personal identity and the makeup style for arbitrary face images. Based on the outputs of the two encoders, a decoder is employed to reconstruct the original faces. We also apply a discriminator to distinguish real faces from fake ones. As a result, our model can not only transfer the makeup styles from one or more reference face images to a non-makeup face with controllable strength, but also produce various outputs with styles sampled from a prior distribution. Extensive experiments demonstrate that our model is superior to existing literature by generating high-quality results for different scenarios of makeup transfer.
89 - Libo Long , Jochen Lang 2021
Feature pyramids and iterative refinement have recently led to great progress in optical flow estimation. However, downsampling in feature pyramids can cause blending of foreground objects with the background, which will mislead subsequent decisions in the iterative processing. The results are missing details especially in the flow of thin and of small structures. We propose a novel Residual Feature Pyramid Module (RFPM) which retains important details in the feature map without changing the overall iterative refinement design of the optical flow estimation. RFPM incorporates a residual structure between multiple feature pyramids into a downsampling module that corrects the blending of objects across boundaries. We demonstrate how to integrate our module with two state-of-the-art iterative refinement architectures. Results show that our RFPM visibly reduces flow errors and improves state-of-art performance in the clean pass of Sintel, and is one of the top-performing methods in KITTI. According to the particular modular structure of RFPM, we introduce a special transfer learning approach that can dramatically decrease the training time compared to a typical full optical flow training schedule on multiple datasets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا