No Arabic abstract
Conventional video inpainting is neither object-oriented nor occlusion-aware, making it liable to obvious artifacts when large occluded object regions are inpainted. This paper presents occlusion-aware video object inpainting, which recovers both the complete shape and appearance for occluded objects in videos given their visible mask segmentation. To facilitate this new research, we construct the first large-scale video object inpainting benchmark YouTube-VOI to provide realistic occlusion scenarios with both occluded and visible object masks available. Our technical contribution VOIN jointly performs video object shape completion and occluded texture generation. In particular, the shape completion module models long-range object coherence while the flow completion module recovers accurate flow with sharp motion boundary, for propagating temporally-consistent texture to the same moving object across frames. For more realistic results, VOIN is optimized using both T-PatchGAN and a new spatio-temporal attention-based multi-class discriminator. Finally, we compare VOIN and strong baselines on YouTube-VOI. Experimental results clearly demonstrate the efficacy of our method including inpainting complex and dynamic objects. VOIN degrades gracefully with inaccurate input visible mask.
In this paper, we proposed an unsupervised learning method for estimating the optical flow between video frames, especially to solve the occlusion problem. Occlusion is caused by the movement of an object or the movement of the camera, defined as when certain pixels are visible in one video frame but not in adjacent frames. Due to the lack of pixel correspondence between frames in the occluded area, incorrect photometric loss calculation can mislead the optical flow training process. In the video sequence, we found that the occlusion in the forward ($trightarrow t+1$) and backward ($trightarrow t-1$) frame pairs are usually complementary. That is, pixels that are occluded in subsequent frames are often not occluded in the previous frame and vice versa. Therefore, by using this complementarity, a new weighted loss is proposed to solve the occlusion problem. In addition, we calculate gradients in multiple directions to provide richer supervision information. Our method achieves competitive optical flow accuracy compared to the baseline and some supervised methods on KITTI 2012 and 2015 benchmarks. This source code has been released at https://github.com/jianfenglihg/UnOpticalFlow.git.
Video inpainting aims to fill spatio-temporal holes with plausible content in a video. Despite tremendous progress of deep neural networks for image inpainting, it is challenging to extend these methods to the video domain due to the additional time dimension. In this work, we propose a novel deep network architecture for fast video inpainting. Built upon an image-based encoder-decoder model, our framework is designed to collect and refine information from neighbor frames and synthesize still-unknown regions. At the same time, the output is enforced to be temporally consistent by a recurrent feedback and a temporal memory module. Compared with the state-of-the-art image inpainting algorithm, our method produces videos that are much more semantically correct and temporally smooth. In contrast to the prior video completion method which relies on time-consuming optimization, our method runs in near real-time while generating competitive video results. Finally, we applied our framework to video retargeting task, and obtain visually pleasing results.
Monocular 3D object parsing is highly desirable in various scenarios including occlusion reasoning and holistic scene interpretation. We present a deep convolutional neural network (CNN) architecture to localize semantic parts in 2D image and 3D space while inferring their visibility states, given a single RGB image. Our key insight is to exploit domain knowledge to regularize the network by deeply supervising its hidden layers, in order to sequentially infer intermediate concepts associated with the final task. To acquire training data in desired quantities with ground truth 3D shape and relevant concepts, we render 3D object CAD models to generate large-scale synthetic data and simulate challenging occlusion configurations between objects. We train the network only on synthetic data and demonstrate state-of-the-art performances on real image benchmarks including an extended version of KITTI, PASCAL VOC, PASCAL3D+ and IKEA for 2D and 3D keypoint localization and instance segmentation. The empirical results substantiate the utility of our deep supervision scheme by demonstrating effective transfer of knowledge from synthetic data to real images, resulting in less overfitting compared to standard end-to-end training.
Occlusion is an inevitable and critical problem in unsupervised optical flow learning. Existing methods either treat occlusions equally as non-occluded regions or simply remove them to avoid incorrectness. However, the occlusion regions can provide effective information for optical flow learning. In this paper, we present OccInpFlow, an occlusion-inpainting framework to make full use of occlusion regions. Specifically, a new appearance-flow network is proposed to inpaint occluded flows based on the image content. Moreover, a boundary warp is proposed to deal with occlusions caused by displacement beyond image border. We conduct experiments on multiple leading flow benchmark data sets such as Flying Chairs, KITTI and MPI-Sintel, which demonstrate that the performance is significantly improved by our proposed occlusion handling framework.
Occlusion removal is an interesting application of image enhancement, for which, existing work suggests manually-annotated or domain-specific occlusion removal. No work tries to address automatic occlusion detection and removal as a context-aware generic problem. In this paper, we present a novel methodology to identify objects that do not relate to the image context as occlusions and remove them, reconstructing the space occupied coherently. The proposed system detects occlusions by considering the relation between foreground and background object classes represented as vector embeddings, and removes them through inpainting. We test our system on COCO-Stuff dataset and conduct a user study to establish a baseline in context-aware automatic occlusion removal.