No Arabic abstract
Every spacetime is defined by its metric, the mathematical object which further defines the spacetime curvature. From the relativity principle, we have the freedom to choose which coordinate system to write our metric in. Some coordinate systems, however, are better than others. In this text, we begin with a brief introduction into general relativity, Einsteins masterpiece theory of gravity. We then discuss some physically interesting spacetimes and the coordinate systems that the metrics of these spacetimes can be expressed in. More specifically, we discuss the existence of the rather useful unit-lapse forms of these spacetimes. Using the metric written in this form then allows us to conduct further analysis of these spacetimes, which we discuss.
It is shown that only the maximally-symmetric spacetimes can be expressed in both the Robertson-Walker form and in static form - there are no other static forms of the Robertson-Walker spacetimes. All possible static forms of the metric of the maximally-symmetric spacetimes are presented as a table. The findings are generalized to apply to functionally more general spacetimes: it is shown that the maximally symmetric spacetimes are also the only spacetimes that can be written in both orthogonal-time isotropic form and in static form.
In the framework of spatially covariant gravity, it is natural to extend a gravitational theory by putting the lapse function $N$ and the spatial metric $h_{ij}$ on an equal footing. We find two sufficient and necessary conditions for ensuring two physical degrees of freedom (DoF) for the theory with the lapse function being dynamical by Hamiltonian analysis. A class of quadratic actions with only two DoF is constructed. In the case that the coupling functions depend on $N$ only, we find that the spatial curvature term cannot enter the Lagrangian and thus this theory possesses no wave solution and cannot recover general relativity (GR). In the case that the coupling functions depend on the spatial derivatives of $N$, we perform a spatially conformal transformation on a class of quadratic actions with nondynamical lapse function to obtain a class of quadratic actions with $dot{N}$. We confirm this theory has two DoF by checking the two sufficient and necessary conditions. Besides, we find that a class of quadratic actions with two DoF can be transformed from GR by disformal transformation.
Kundt spacetimes are of great importance in general relativity in 4 dimensions and have a number of topical applications in higher dimensions in the context of string theory. The degenerate Kundt spacetimes have many special and unique mathematical properties, including their invariant curvature structure and their holonomy structure. We provide a rigorous geometrical kinematical definition of the general Kundt spacetime in 4 dimensions; essentially a Kundt spacetime is defined as one admitting a null vector that is geodesic, expansion-free, shear-free and twist-free. A Kundt spacetime is said to be degenerate if the preferred kinematic and curvature null frames are all aligned. The degenerate Kundt spacetimes are the only spacetimes in 4 dimensions that are not $mathcal{I}$-non-degenerate, so that they are not determined by their scalar polynomial curvature invariants. We first discuss the non-aligned Kundt spacetimes, and then turn our attention to the degenerate Kundt spacetimes. The degenerate Kundt spacetimes are classified algebraically by the Riemann tensor and its covariant derivatives in the aligned kinematic frame; as an example, we classify Riemann type D degenerate Kundt spacetimes in which $ abla(Riem), abla^{(2)}(Riem)$ are also of type D. We discuss other local characteristics of the degenerate Kundt spacetimes. Finally, we discuss degenerate Kundt spacetimes in higher dimensions.
Using the quasi-Maxwell formalism, we derive the necessary and sufficient conditions for the matching of two stationary spacetimes along a stationary timelike hypersurface, expressed in terms of the gravitational and gravitomagnetic fields and the 2-dimensional matching surface on the space manifold. We prove existence and uniqueness results to the matching problem for stationary perfect fluid spacetimes with spherical, planar, hyperbolic and cylindrical symmetry. Finally, we find an explicit interior for the cylindrical analogue of the NUT spacetime.
We algebraically classify some higher dimensional spacetimes, including a number of vacuum solutions of the Einstein field equations which can represent higher dimensional black holes. We discuss some consequences of this work.