Do you want to publish a course? Click here

Parallax of the L4.5 dwarf 2M1821$+$14 from high-precision astrometry with OSIRIS at GTC

94   0   0.0 ( 0 )
 Added by Johannes Sahlmann
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We used the OSIRIS camera at the 10.4 m Gran Telescopio Canarias (GTC) to monitor the astrometric motion of the L4.5 dwarf 2M1821$+$14 over 17 months. The astrometric residuals of eleven epochs have a r.m.s. dispersion of 0.4 mas, which is larger than the average precision of 0.23 mas per epoch and hints towards an additional signal or excess noise. Comparison of the point-spread-functions in OSIRIS and FORS2/VLT images reveals no differences critical for high-precision astrometry, despite the GTCs segmented primary mirror. We attribute the excess noise to an unknown effect that may be uncovered with additional data. For 2M1821$+$14, we measured a relative parallax of $106.15 pm 0.18$ mas and determined a correction of $0.50pm0.05$ mas to absolute parallax, leading to a distance of $9.38 pm0.03$ pc. We excluded at 3-$sigma$ confidence the presence of a companion to 2M1821$+$14 down to a mass ratio of 0.1 ($approx 5, M_mathrm{Jupiter}$) with a period of 50--1000 days and a separation of 0.1--0.7 au. The accurate parallax allowed us to estimate the age and mass of 2M1821$+$14 of 120--700 Myr and 0.049$^{+0.014}_{-0.024}$ M$_odot$, thus confirming its intermediate age and substellar mass. We complement our study with a parallax and proper motion catalogue of 587 stars ($isimeq15.5-22$) close to 2M1821$+$14, used as astrometric references. This study demonstrates sub-mas astrometry with the GTC, a capability applicable for a variety of science cases including the search for extrasolar planets and relevant for future astrometric observations with E-ELT and TMT.

rate research

Read More

(Abridged) Hubble Space Telescope (HST) Fine Guidance Sensor astrometric observations of the G4 IV star HD 38529 are combined with the results of the analysis of extensive ground-based radial velocity data to determine the mass of the outermost of two previously known companions. Our new radial velocities obtained with the Hobby-Eberly Telescope and velocities from the Carnegie-California group now span over eleven years. With these data we obtain improved RV orbital elements for both the inner companion, HD 38529 b and the outer companion, HD 38529 c. We identify a rotational period of HD 38529 (P_{rot}=31.65 +/- 0.17 d) with FGS photometry. We model the combined astrometric and RV measurements to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size due to HD 38529 c. For HD 38529 c we find P = 2136.1 +/- 0.3 d, perturbation semi-major axis alpha =1.05 +/-0.06$ mas, and inclination $i$ = 48.3 deg +/- 4 deg. Assuming a primary mass M_* = 1.48 M_{sun}, we obtain a companion mass M_c = 17.6 ^{+1.5}_{-1.2} M_{Jup}, 3-sigma above a 13 M_{Jup} deuterium burning, brown dwarf lower limit. Dynamical simulations incorporating this accurate mass for HD 38529 c indicate that a near-Saturn mass planet could exist between the two known companions. We find weak evidence of an additional low amplitude signal that can be modeled as a planetary-mass (~0.17 M$_{Jup}) companion at P~194 days. Additional observations (radial velocities and/or Gaia astrometry) are required to validate an interpretation of HD 38529 d as a planetary-mass companion. If confirmed, the resulting HD 38529 planetary system may be an example of a Packed Planetary System.
Stellar activity strongly affects and may prevent the detection of Earth-mass planets in the habitable zone of solar-type stars with radial velocity technics. Astrometry is in principle less sensitive to stellar activity because the situation is more favourable: the stellar astrometric signal is expected to be fainter than the planetary astrometric signal compared to radial velocities. We quantify the effect of stellar activity on high-precision astrometry when Earth-mass planets are searched for in the habitable zone around old main-sequence solar-type stars. We used a very large set of magnetic activity synthetic time series to characterise the properties of the stellar astrometric signal. We then studied the detectability of exoplanets based on different approaches: first based on the theoretical level of false positives derived from the synthetic time series, and then with blind tests for old main-sequence F6-K4 stars. The amplitude of the signal can be up to a few times the solar value depending on the assumptions made for activity level, spectral type, and spot contrast. The detection rates for 1 MEarth planets are very good, however, with extremely low false-positive rates in the habitable zone for stars in the F6-K4 range at 10 pc. The standard false-alarm probability using classical bootstrapping on the time series strongly overestimates the false-positive level. This affects the detection rates. We conclude that if technological challenges can be overcome and very high precision is reached, astrometry is much more suitable for detecting Earth-mass planets in the habitable zone around nearby solar-type stars than radial velocity, and detection rates are much higher for this range of planetary masses and periods when astrometric techniques are used than with radial velocity techniques.
We present the results of low-resolution optical spectroscopy with OSIRIS/GTC (Optical System for Imaging and Low Resolution Integrated Spectroscopy / Gran Telescopio Canarias) for a sample of ultracool dwarfs. For a subsample of seven objects, based on 2MASS NIR photometric colours, a photometric spectral type is determined and compared to the results of the optical spectroscopy. For the stars, showing H$alpha$ line in emission, equivalent widths were measured, and the ratio of H$alpha$ to bolometric luminosity were calculated. We find that two dwarfs show the presence of magnetic activity over long periods, LP 326-21 -- quasi-constant-like, and 2MASS J17071830+6439331 -- variable.
Astrometry can bring powerful constraints to bear on a variety of scientific questions about neutron stars, including their origins, astrophysics, evolution, and environments. Using phase-referenced observations at the VLBA, in conjunction with pulsar gating and in-beam calibration, we have measured the parallaxes and proper motions for 14 pulsars. The smallest measured parallax in our sample is 0.13+-0.02 mas for PSR B1541+09, which has a most probable distance of 7.2+1.3-1.1 kpc. We detail our methods, including initial VLA surveys to select candidates and find in-beam calibrators, VLBA phase-referencing, pulsar gating, calibration, and data reduction. The use of the bootstrap method to estimate astrometric uncertainties in the presence of unmodeled systematic errors is also described. Based on our new model-independent estimates for distance and transverse velocity, we investigate the kinematics and birth sites of the pulsars and revisit models of the Galactic electron density distribution. We find that young pulsars are moving away from the Galactic plane, as expected, and that age estimates from kinematics and pulsar spindown are generally in agreement, with certain notable exceptions. Given its present trajectory, the pulsar B2045-16 was plausibly born in the open cluster NGC 6604. For several high-latitude pulsars, the NE2001 electron density model underestimates the parallax distances by a factor of two, while in others the estimates agree with or are larger than the parallax distances, suggesting that the interstellar medium is irregular on relevant length scales. The VLBA astrometric results for the recycled pulsar J1713+0747 are consistent with two independent estimates from pulse timing, enabling a consistency check between the different reference frames.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا