No Arabic abstract
Journalists publish statements provided by people, or textit{sources} to contextualize current events, help voters make informed decisions, and hold powerful individuals accountable. In this work, we construct an ontological labeling system for sources based on each sources textit{affiliation} and textit{role}. We build a probabilistic model to infer these attributes for named sources and to describe news articles as mixtures of these sources. Our model outperforms existing mixture modeling and co-clustering approaches and correctly infers source-type in 80% of expert-evaluated trials. Such work can facilitate research in downstream tasks like opinion and argumentation mining, representing a first step towards machine-in-the-loop textit{computational journalism} systems.
Online users today are exposed to misleading and propagandistic news articles and media posts on a daily basis. To counter thus, a number of approaches have been designed aiming to achieve a healthier and safer online news and media consumption. Automatic systems are able to support humans in detecting such content; yet, a major impediment to their broad adoption is that besides being accurate, the decisions of such systems need also to be interpretable in order to be trusted and widely adopted by users. Since misleading and propagandistic content influences readers through the use of a number of deception techniques, we propose to detect and to show the use of such techniques as a way to offer interpretability. In particular, we define qualitatively descriptive features and we analyze their suitability for detecting deception techniques. We further show that our interpretable features can be easily combined with pre-trained language models, yielding state-of-the-art results.
Extensive research on target-dependent sentiment classification (TSC) has led to strong classification performances in domains where authors tend to explicitly express sentiment about specific entities or topics, such as in reviews or on social media. We investigate TSC in news articles, a much less researched domain, despite the importance of news as an essential information source in individual and societal decision making. This article introduces NewsTSC, a manually annotated dataset to explore TSC on news articles. Investigating characteristics of sentiment in news and contrasting them to popular TSC domains, we find that sentiment in the news is expressed less explicitly, is more dependent on context and readership, and requires a greater degree of interpretation. In an extensive evaluation, we find that the state of the art in TSC performs worse on news articles than on other domains (average recall AvgRec = 69.8 on NewsTSC compared to AvgRev = [75.6, 82.2] on established TSC datasets). Reasons include incorrectly resolved relation of target and sentiment-bearing phrases and off-context dependence. As a major improvement over previous news TSC, we find that BERTs natural language understanding capabilities capture the less explicit sentiment used in news articles.
Framing a news article means to portray the reported event from a specific perspective, e.g., from an economic or a health perspective. Reframing means to change this perspective. Depending on the audience or the submessage, reframing can become necessary to achieve the desired effect on the readers. Reframing is related to adapting style and sentiment, which can be tackled with neural text generation techniques. However, it is more challenging since changing a frame requires rewriting entire sentences rather than single phrases. In this paper, we study how to computationally reframe sentences in news articles while maintaining their coherence to the context. We treat reframing as a sentence-level fill-in-the-blank task for which we train neural models on an existing media frame corpus. To guide the training, we propose three strategies: framed-language pretraining, named-entity preservation, and adversarial learning. We evaluate respective models automatically and manually for topic consistency, coherence, and successful reframing. Our results indicate that generating properly-framed text works well but with tradeoffs.
In this work, we introduce a corpus for satire detection in Romanian news. We gathered 55,608 public news articles from multiple real and satirical news sources, composing one of the largest corpora for satire detection regardless of language and the only one for the Romanian language. We provide an official split of the text samples, such that training news articles belong to different sources than test news articles, thus ensuring that models do not achieve high performance simply due to overfitting. We conduct experiments with two state-of-the-art deep neural models, resulting in a set of strong baselines for our novel corpus. Our results show that the machine-level accuracy for satire detection in Romanian is quite low (under 73% on the test set) compared to the human-level accuracy (87%), leaving enough room for improvement in future research.
Media plays an important role in shaping public opinion. Biased media can influence people in undesirable directions and hence should be unmasked as such. We observe that featurebased and neural text classification approaches which rely only on the distribution of low-level lexical information fail to detect media bias. This weakness becomes most noticeable for articles on new events, where words appear in new contexts and hence their bias predictiveness is unclear. In this paper, we therefore study how second-order information about biased statements in an article helps to improve detection effectiveness. In particular, we utilize the probability distributions of the frequency, positions, and sequential order of lexical and informational sentence-level bias in a Gaussian Mixture Model. On an existing media bias dataset, we find that the frequency and positions of biased statements strongly impact article-level bias, whereas their exact sequential order is secondary. Using a standard model for sentence-level bias detection, we provide empirical evidence that article-level bias detectors that use second-order information clearly outperform those without.