Do you want to publish a course? Click here

OmniLayout: Room Layout Reconstruction from Indoor Spherical Panoramas

108   0   0.0 ( 0 )
 Added by Ankur Mali
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Given a single RGB panorama, the goal of 3D layout reconstruction is to estimate the room layout by predicting the corners, floor boundary, and ceiling boundary. A common approach has been to use standard convolutional networks to predict the corners and boundaries, followed by post-processing to generate the 3D layout. However, the space-varying distortions in panoramic images are not compatible with the translational equivariance property of standard convolutions, thus degrading performance. Instead, we propose to use spherical convolutions. The resulting network, which we call OmniLayout performs convolutions directly on the sphere surface, sampling according to inverse equirectangular projection and hence invariant to equirectangular distortions. Using a new evaluation metric, we show that our network reduces the error in the heavily distorted regions (near the poles) by approx 25 % when compared to standard convolutional networks. Experimental results show that OmniLayout outperforms the state-of-the-art by approx 4% on two different benchmark datasets (PanoContext and Stanford 2D-3D). Code is available at https://github.com/rshivansh/OmniLayout.



rate research

Read More

300 - Jiale Xu , Jia Zheng , Yanyu Xu 2021
Existing view synthesis methods mainly focus on the perspective images and have shown promising results. However, due to the limited field-of-view of the pinhole camera, the performance quickly degrades when large camera movements are adopted. In this paper, we make the first attempt to generate novel views from a single indoor panorama and take the large camera translations into consideration. To tackle this challenging problem, we first use Convolutional Neural Networks (CNNs) to extract the deep features and estimate the depth map from the source-view image. Then, we leverage the room layout prior, a strong structural constraint of the indoor scene, to guide the generation of target views. More concretely, we estimate the room layout in the source view and transform it into the target viewpoint as guidance. Meanwhile, we also constrain the room layout of the generated target-view images to enforce geometric consistency. To validate the effectiveness of our method, we further build a large-scale photo-realistic dataset containing both small and large camera translations. The experimental results on our challenging dataset demonstrate that our method achieves state-of-the-art performance. The project page is at https://github.com/bluestyle97/PNVS.
Recent approaches for predicting layouts from 360 panoramas produce excellent results. These approaches build on a common framework consisting of three steps: a pre-processing step based on edge-based alignment, prediction of layout elements, and a post-processing step by fitting a 3D layout to the layout elements. Until now, it has been difficult to compare the methods due to multiple different design decisions, such as the encoding network (e.g. SegNet or ResNet), type of elements predicted (e.g. corners, wall/floor boundaries, or semantic segmentation), or method of fitting the 3D layout. To address this challenge, we summarize and describe the common framework, the variants, and the impact of the design decisions. For a complete evaluation, we also propose extended annotations for the Matterport3D dataset [3], and introduce two depth-based evaluation metrics.
We propose an algorithm to predict room layout from a single image that generalizes across panoramas and perspective images, cuboid layouts and more general layouts (e.g. L-shape room). Our method operates directly on the panoramic image, rather than decomposing into perspective images as do recent works. Our network architecture is similar to that of RoomNet, but we show improvements due to aligning the image based on vanishing points, predicting multiple layout elements (corners, boundaries, size and translation), and fitting a constrained Manhattan layout to the resulting predictions. Our method compares well in speed and accuracy to other existing work on panoramas, achieves among the best accuracy for perspective images, and can handle both cuboid-shaped and more general Manhattan layouts.
This paper presents an algorithm for indoor layout estimation and reconstruction through the fusion of a sequence of captured images and LiDAR data sets. In the proposed system, a movable platform collects both intensity images and 2D LiDAR information. Pose estimation and semantic segmentation is computed jointly by aligning the LiDAR points to line segments from the images. For indoor scenes with walls orthogonal to floor, the alignment problem is decoupled into top-down view projection and a 2D similarity transformation estimation and solved by the recursive random sample consensus (R-RANSAC) algorithm. Hypotheses can be generated, evaluated and optimized by integrating new scans as the platform moves throughout the environment. The proposed method avoids the need of extensive prior training or a cuboid layout assumption, which is more effective and practical compared to most previous indoor layout estimation methods. Multi-sensor fusion allows the capability of providing accurate depth estimation and high resolution visual information.
120 - Cheng Yang , Jia Zheng , Xili Dai 2021
Single-image room layout reconstruction aims to reconstruct the enclosed 3D structure of a room from a single image. Most previous work relies on the cuboid-shape prior. This paper considers a more general indoor assumption, i.e., the room layout consists of a single ceiling, a single floor, and several vertical walls. To this end, we first employ Convolutional Neural Networks to detect planes and vertical lines between adjacent walls. Meanwhile, estimating the 3D parameters for each plane. Then, a simple yet effective geometric reasoning method is adopted to achieve room layout reconstruction. Furthermore, we optimize the 3D plane parameters to reconstruct a geometrically consistent room layout between planes and lines. The experimental results on public datasets validate the effectiveness and efficiency of our method.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا