Do you want to publish a course? Click here

LayoutNet: Reconstructing the 3D Room Layout from a Single RGB Image

90   0   0.0 ( 0 )
 Added by Chuhang Zou
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We propose an algorithm to predict room layout from a single image that generalizes across panoramas and perspective images, cuboid layouts and more general layouts (e.g. L-shape room). Our method operates directly on the panoramic image, rather than decomposing into perspective images as do recent works. Our network architecture is similar to that of RoomNet, but we show improvements due to aligning the image based on vanishing points, predicting multiple layout elements (corners, boundaries, size and translation), and fitting a constrained Manhattan layout to the resulting predictions. Our method compares well in speed and accuracy to other existing work on panoramas, achieves among the best accuracy for perspective images, and can handle both cuboid-shaped and more general Manhattan layouts.



rate research

Read More

120 - Cheng Yang , Jia Zheng , Xili Dai 2021
Single-image room layout reconstruction aims to reconstruct the enclosed 3D structure of a room from a single image. Most previous work relies on the cuboid-shape prior. This paper considers a more general indoor assumption, i.e., the room layout consists of a single ceiling, a single floor, and several vertical walls. To this end, we first employ Convolutional Neural Networks to detect planes and vertical lines between adjacent walls. Meanwhile, estimating the 3D parameters for each plane. Then, a simple yet effective geometric reasoning method is adopted to achieve room layout reconstruction. Furthermore, we optimize the 3D plane parameters to reconstruct a geometrically consistent room layout between planes and lines. The experimental results on public datasets validate the effectiveness and efficiency of our method.
We propose a computational framework to jointly parse a single RGB image and reconstruct a holistic 3D configuration composed by a set of CAD models using a stochastic grammar model. Specifically, we introduce a Holistic Scene Grammar (HSG) to represent the 3D scene structure, which characterizes a joint distribution over the functional and geometric space of indoor scenes. The proposed HSG captures three essential and often latent dimensions of the indoor scenes: i) latent human context, describing the affordance and the functionality of a room arrangement, ii) geometric constraints over the scene configurations, and iii) physical constraints that guarantee physically plausible parsing and reconstruction. We solve this joint parsing and reconstruction problem in an analysis-by-synthesis fashion, seeking to minimize the differences between the input image and the rendered images generated by our 3D representation, over the space of depth, surface normal, and object segmentation map. The optimal configuration, represented by a parse graph, is inferred using Markov chain Monte Carlo (MCMC), which efficiently traverses through the non-differentiable solution space, jointly optimizing object localization, 3D layout, and hidden human context. Experimental results demonstrate that the proposed algorithm improves the generalization ability and significantly outperforms prior methods on 3D layout estimation, 3D object detection, and holistic scene understanding.
We propose NormalGAN, a fast adversarial learning-based method to reconstruct the complete and detailed 3D human from a single RGB-D image. Given a single front-view RGB-D image, NormalGAN performs two steps: front-view RGB-D rectification and back-view RGBD inference. The final model was then generated by simply combining the front-view and back-view RGB-D information. However, inferring backview RGB-D image with high-quality geometric details and plausible texture is not trivial. Our key observation is: Normal maps generally encode much more information of 3D surface details than RGB and depth images. Therefore, learning geometric details from normal maps is superior than other representations. In NormalGAN, an adversarial learning framework conditioned by normal maps is introduced, which is used to not only improve the front-view depth denoising performance, but also infer the back-view depth image with surprisingly geometric details. Moreover, for texture recovery, we remove shading information from the front-view RGB image based on the refined normal map, which further improves the quality of the back-view color inference. Results and experiments on both testing data set and real captured data demonstrate the superior performance of our approach. Given a consumer RGB-D sensor, NormalGAN can generate the complete and detailed 3D human reconstruction results in 20 fps, which further enables convenient interactive experiences in telepresence, AR/VR and gaming scenarios.
Detecting 3D objects from a single RGB image is intrinsically ambiguous, thus requiring appropriate prior knowledge and intermediate representations as constraints to reduce the uncertainties and improve the consistencies between the 2D image plane and the 3D world coordinate. To address this challenge, we propose to adopt perspective points as a new intermediate representation for 3D object detection, defined as the 2D projections of local Manhattan 3D keypoints to locate an object; these perspective points satisfy geometric constraints imposed by the perspective projection. We further devise PerspectiveNet, an end-to-end trainable model that simultaneously detects the 2D bounding box, 2D perspective points, and 3D object bounding box for each object from a single RGB image. PerspectiveNet yields three unique advantages: (i) 3D object bounding boxes are estimated based on perspective points, bridging the gap between 2D and 3D bounding boxes without the need of category-specific 3D shape priors. (ii) It predicts the perspective points by a template-based method, and a perspective loss is formulated to maintain the perspective constraints. (iii) It maintains the consistency between the 2D perspective points and 3D bounding boxes via a differentiable projective function. Experiments on SUN RGB-D dataset show that the proposed method significantly outperforms existing RGB-based approaches for 3D object detection.
In this paper, we address the novel, highly challenging problem of estimating the layout of a complex urban driving scenario. Given a single color image captured from a driving platform, we aim to predict the birds-eye view layout of the road and other traffic participants. The estimated layout should reason beyond what is visible in the image, and compensate for the loss of 3D information due to projection. We dub this problem amodal scene layout estimation, which involves hallucinating scene layout for even parts of the world that are occluded in the image. To this end, we present MonoLayout, a deep neural network for real-time amodal scene layout estimation from a single image. We represent scene layout as a multi-channel semantic occupancy grid, and leverage adversarial feature learning to hallucinate plausible completions for occluded image parts. Due to the lack of fair baseline methods, we extend several state-of-the-art approaches for road-layout estimation and vehicle occupancy estimation in birds-eye view to the amodal setup for rigorous evaluation. By leveraging temporal sensor fusion to generate training labels, we significantly outperform current art over a number of datasets. On the KITTI and Argoverse datasets, we outperform all baselines by a significant margin. We also make all our annotations, and code publicly available. A video abstract of this paper is available https://www.youtube.com/watch?v=HcroGyo6yRQ .

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا