Do you want to publish a course? Click here

Manhattan Room Layout Reconstruction from a Single 360 image: A Comparative Study of State-of-the-art Methods

327   0   0.0 ( 0 )
 Added by Chuhang Zou
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Recent approaches for predicting layouts from 360 panoramas produce excellent results. These approaches build on a common framework consisting of three steps: a pre-processing step based on edge-based alignment, prediction of layout elements, and a post-processing step by fitting a 3D layout to the layout elements. Until now, it has been difficult to compare the methods due to multiple different design decisions, such as the encoding network (e.g. SegNet or ResNet), type of elements predicted (e.g. corners, wall/floor boundaries, or semantic segmentation), or method of fitting the 3D layout. To address this challenge, we summarize and describe the common framework, the variants, and the impact of the design decisions. For a complete evaluation, we also propose extended annotations for the Matterport3D dataset [3], and introduce two depth-based evaluation metrics.



rate research

Read More

We propose an algorithm to predict room layout from a single image that generalizes across panoramas and perspective images, cuboid layouts and more general layouts (e.g. L-shape room). Our method operates directly on the panoramic image, rather than decomposing into perspective images as do recent works. Our network architecture is similar to that of RoomNet, but we show improvements due to aligning the image based on vanishing points, predicting multiple layout elements (corners, boundaries, size and translation), and fitting a constrained Manhattan layout to the resulting predictions. Our method compares well in speed and accuracy to other existing work on panoramas, achieves among the best accuracy for perspective images, and can handle both cuboid-shaped and more general Manhattan layouts.
Despite the tremendous progress recently made towards automatic sleep staging in adults, it is currently known if the most advanced algorithms generalize to the pediatric population, which displays distinctive characteristics in overnight polysomnography (PSG). To answer the question, in this work, we conduct a large-scale comparative study on the state-of-the-art deep learning methods for pediatric automatic sleep staging. A selection of six different deep neural networks with diverging features are adopted to evaluate a sample of more than 1,200 children across a wide spectrum of obstructive sleep apnea (OSA) severity. Our experimental results show that the performance of automated pediatric sleep staging when evaluated on new subjects is equivalent to the expert-level one reported on adults, reaching an overall accuracy of 87.0%, a Cohens kappa of 0.829, and a macro F1-score of 83.5% in case of single-channel EEG. The performance is further improved when dual-channel EEG$cdot$EOG are used, reaching an accuracy of 88.2%, a Cohens kappa of 0.844, and a macro F1-score of 85.1%. The results also show that the studied algorithms are robust to concept drift when the training and test data were recorded 7-months apart. Detailed analyses further demonstrate almost perfect agreement between the automatic scorers to one another and their similar behavioral patterns on the staging errors.
In this paper, we address the novel, highly challenging problem of estimating the layout of a complex urban driving scenario. Given a single color image captured from a driving platform, we aim to predict the birds-eye view layout of the road and other traffic participants. The estimated layout should reason beyond what is visible in the image, and compensate for the loss of 3D information due to projection. We dub this problem amodal scene layout estimation, which involves hallucinating scene layout for even parts of the world that are occluded in the image. To this end, we present MonoLayout, a deep neural network for real-time amodal scene layout estimation from a single image. We represent scene layout as a multi-channel semantic occupancy grid, and leverage adversarial feature learning to hallucinate plausible completions for occluded image parts. Due to the lack of fair baseline methods, we extend several state-of-the-art approaches for road-layout estimation and vehicle occupancy estimation in birds-eye view to the amodal setup for rigorous evaluation. By leveraging temporal sensor fusion to generate training labels, we significantly outperform current art over a number of datasets. On the KITTI and Argoverse datasets, we outperform all baselines by a significant margin. We also make all our annotations, and code publicly available. A video abstract of this paper is available https://www.youtube.com/watch?v=HcroGyo6yRQ .
120 - Cheng Yang , Jia Zheng , Xili Dai 2021
Single-image room layout reconstruction aims to reconstruct the enclosed 3D structure of a room from a single image. Most previous work relies on the cuboid-shape prior. This paper considers a more general indoor assumption, i.e., the room layout consists of a single ceiling, a single floor, and several vertical walls. To this end, we first employ Convolutional Neural Networks to detect planes and vertical lines between adjacent walls. Meanwhile, estimating the 3D parameters for each plane. Then, a simple yet effective geometric reasoning method is adopted to achieve room layout reconstruction. Furthermore, we optimize the 3D plane parameters to reconstruct a geometrically consistent room layout between planes and lines. The experimental results on public datasets validate the effectiveness and efficiency of our method.
In this paper, we propose a method to obtain a compact and accurate 3D wireframe representation from a single image by effectively exploiting global structural regularities. Our method trains a convolutional neural network to simultaneously detect salient junctions and straight lines, as well as predict their 3D depth and vanishing points. Compared with the state-of-the-art learning-based wireframe detection methods, our network is simpler and more unified, leading to better 2D wireframe detection. With global structural priors from parallelism, our method further reconstructs a full 3D wireframe model, a compact vector representation suitable for a variety of high-level vision tasks such as AR and CAD. We conduct extensive evaluations on a large synthetic dataset of urban scenes as well as real images. Our code and datasets have been made public at https://github.com/zhou13/shapeunity.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا