No Arabic abstract
Machine learning models that offer excellent predictive performance often lack the interpretability necessary to support integrated human machine decision-making. In clinical medicine and other high-risk settings, domain experts may be unwilling to trust model predictions without explanations. Work in explainable AI must balance competing objectives along two different axes: 1) Explanations must balance faithfulness to the models decision-making with their plausibility to a domain expert. 2) Domain experts desire local explanations of individual predictions and global explanations of behavior in aggregate. We propose to train a proxy model that mimics the behavior of the trained model and provides fine-grained control over these trade-offs. We evaluate our approach on the task of assigning ICD codes to clinical notes to demonstrate that explanations from the proxy model are faithful and replicate the trained model behavior.
Humans are the final decision makers in critical tasks that involve ethical and legal concerns, ranging from recidivism prediction, to medical diagnosis, to fighting against fake news. Although machine learning models can sometimes achieve impressive performance in these tasks, these tasks are not amenable to full automation. To realize the potential of machine learning for improving human decisions, it is important to understand how assistance from machine learning models affects human performance and human agency. In this paper, we use deception detection as a testbed and investigate how we can harness explanations and predictions of machine learning models to improve human performance while retaining human agency. We propose a spectrum between full human agency and full automation, and develop varying levels of machine assistance along the spectrum that gradually increase the influence of machine predictions. We find that without showing predicted labels, explanations alone slightly improve human performance in the end task. In comparison, human performance is greatly improved by showing predicted labels (>20% relative improvement) and can be further improved by explicitly suggesting strong machine performance. Interestingly, when predicted labels are shown, explanations of machine predictions induce a similar level of accuracy as an explicit statement of strong machine performance. Our results demonstrate a tradeoff between human performance and human agency and show that explanations of machine predictions can moderate this tradeoff.
Abbreviation disambiguation is important for automated clinical note processing due to the frequent use of abbreviations in clinical settings. Current models for automated abbreviation disambiguation are restricted by the scarcity and imbalance of labeled training data, decreasing their generalizability to orthogonal sources. In this work we propose a novel data augmentation technique that utilizes information from related medical concepts, which improves our models ability to generalize. Furthermore, we show that incorporating the global context information within the whole medical note (in addition to the traditional local context window), can significantly improve the models representation for abbreviations. We train our model on a public dataset (MIMIC III) and test its performance on datasets from different sources (CASI, i2b2). Together, these two techniques boost the accuracy of abbreviation disambiguation by almost 14% on the CASI dataset and 4% on i2b2.
Federated learning enables machine learning algorithms to be trained over a network of multiple decentralized edge devices without requiring the exchange of local datasets. Successfully deploying federated learning requires ensuring that agents (e.g., mobile devices) faithfully execute the intended algorithm, which has been largely overlooked in the literature. In this study, we first use risk bounds to analyze how the key feature of federated learning, unbalanced and non-i.i.d. data, affects agents incentives to voluntarily participate and obediently follow traditional federated learning algorithms. To be more specific, our analysis reveals that agents with less typical data distributions and relatively more samples are more likely to opt out of or tamper with federated learning algorithms. To this end, we formulate the first faithful implementation problem of federated learning and design two faithful federated learning mechanisms which satisfy economic properties, scalability, and privacy. Further, the time complexity of computing all agents payments in the number of agents is $mathcal{O}(1)$. First, we design a Faithful Federated Learning (FFL) mechanism which approximates the Vickrey-Clarke-Groves (VCG) payments via an incremental computation. We show that it achieves (probably approximate) optimality, faithful implementation, voluntary participation, and some other economic properties (such as budget balance). Second, by partitioning agents into several subsets, we present a scalable VCG mechanism approximation. We further design a scalable and Differentially Private FFL (DP-FFL) mechanism, the first differentially private faithful mechanism, that maintains the economic properties. Our mechanism enables one to make three-way performance tradeoffs among privacy, the iterations needed, and payment accuracy loss.
Medical code assignment from clinical text is a fundamental task in clinical information system management. As medical notes are typically lengthy and the medical coding systems code space is large, this task is a long-standing challenge. Recent work applies deep neural network models to encode the medical notes and assign medical codes to clinical documents. However, these methods are still ineffective as they do not fully encode and capture the lengthy and rich semantic information of medical notes nor explicitly exploit the interactions between the notes and codes. We propose a novel method, gated convolutional neural networks, and a note-code interaction (GatedCNN-NCI), for automatic medical code assignment to overcome these challenges. Our methods capture the rich semantic information of the lengthy clinical text for better representation by utilizing embedding injection and gated information propagation in the medical note encoding module. With a novel note-code interaction design and a graph message passing mechanism, we explicitly capture the underlying dependency between notes and codes, enabling effective code prediction. A weight sharing scheme is further designed to decrease the number of trainable parameters. Empirical experiments on real-world clinical datasets show that our proposed model outperforms state-of-the-art models in most cases, and our model size is on par with light-weighted baselines.
Millions of unsolicited medical inquiries are received by pharmaceutical companies every year. It has been hypothesized that these inquiries represent a treasure trove of information, potentially giving insight into matters regarding medicinal products and the associated medical treatments. However, due to the large volume and specialized nature of the inquiries, it is difficult to perform timely, recurrent, and comprehensive analyses. Here, we propose a machine learning approach based on natural language processing and unsupervised learning to automatically discover key topics in real-world medical inquiries from customers. This approach does not require ontologies nor annotations. The discovered topics are meaningful and medically relevant, as judged by medical information specialists, thus demonstrating that unsolicited medical inquiries are a source of valuable customer insights. Our work paves the way for the machine-learning-driven analysis of medical inquiries in the pharmaceutical industry, which ultimately aims at improving patient care.