The higher rank numerical ranges of generic matrices are described in terms of the components of their Kippenhahn curves. Cases of tridiagonal (in particular, reciprocal) 2-periodic matrices are treated in more detail.
Tridiagonal matrices with constant main diagonal and reciprocal pairs of off-diagonal entries are considered. Conditions for such matrices with sizes up to 6-by-6 to have elliptical numerical ranges are obtained.
We describe here the higher rank numerical range, as defined by Choi, Kribs and Zyczkowski, of a normal operator on an infinite dimensional Hilbert space in terms of its spectral measure. This generalizes a result of Avendano for self-adjoint operators. An analogous description of the numerical range of a normal operator by Durszt is derived for the higher rank numerical range as an immediate consequence. It has several interesting applications. We show using Durszts example that there exists a normal contraction $T$ for which the intersection of the higher rank numerical ranges of all unitary dilations of $T$ contains the higher rank numerical range of $T$ as a proper subset. Finally, we strengthen and generalize a result of Wu by providing a necessary and sufficient condition for the higher rank numerical range of a normal contraction being equal to the intersection of the higher rank numerical ranges of all possible unitary dilations of it.
A complete description of 4-by-4 matrices $begin{bmatrix}alpha I & C D & beta Iend{bmatrix}$, with scalar 2-by-2 diagonal blocks, for which the numerical range is the convex hull of two non-concentric ellipses is given. This result is obtained by reduction to the leading special case in which $C-D^*$ also is a scalar multiple of the identity. In particular cases when in addition $alpha-beta$ is real or pure imaginary, the results take an especially simple form. An application to reciprocal matrices is provided.
By definition, reciprocal matrices are tridiagonal $n$-by-$n$ matrices $A$ with constant main diagonal and such that $a_{i,i+1}a_{i+1,i}=1$ for $i=1,ldots,n-1$. For $nleq 6$, we establish criteria under which the numerical range generating curves (also called Kippenhahn curves) of such matrices consist of elliptical components only. As a corollary, we also provide a complete description of higher-rank numerical ranges when the criteria are met.
The 4-by-4 nilpotent matrices the numerical ranges of which have non-parallel flat portions on their boundary that are on lines equidistant from the origin are characterized. Their numerical ranges are always symmetric about a line through the origin and all possible angles between the lines containing the flat portions are attained.
Natalia Bebiano
,Joao da Providencia
,Ilya M. Spitkovsky
.
(2021)
.
"On Kippenhahn curves and higher-rank numerical ranges of some matrices"
.
Ilya Spitkovsky
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا