Do you want to publish a course? Click here

IQDet: Instance-wise Quality Distribution Sampling for Object Detection

120   0   0.0 ( 0 )
 Added by Yuchen Ma
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose a dense object detector with an instance-wise sampling strategy, named IQDet. Instead of using human prior sampling strategies, we first extract the regional feature of each ground-truth to estimate the instance-wise quality distribution. According to a mixture model in spatial dimensions, the distribution is more noise-robust and adapted to the semantic pattern of each instance. Based on the distribution, we propose a quality sampling strategy, which automatically selects training samples in a probabilistic manner and trains with more high-quality samples. Extensive experiments on MS COCO show that our method steadily improves baseline by nearly 2.4 AP without bells and whistles. Moreover, our best model achieves 51.6 AP, outperforming all existing state-of-the-art one-stage detectors and it is completely cost-free in inference time.



rate research

Read More

91 - Xing Dai , Zeren Jiang , Zhao Wu 2021
In recent years, knowledge distillation has been proved to be an effective solution for model compression. This approach can make lightweight student models acquire the knowledge extracted from cumbersome teacher models. However, previous distillation methods of detection have weak generalization for different detection frameworks and rely heavily on ground truth (GT), ignoring the valuable relation information between instances. Thus, we propose a novel distillation method for detection tasks based on discriminative instances without considering the positive or negative distinguished by GT, which is called general instance distillation (GID). Our approach contains a general instance selection module (GISM) to make full use of feature-based, relation-based and response-based knowledge for distillation. Extensive results demonstrate that the student model achieves significant AP improvement and even outperforms the teacher in various detection frameworks. Specifically, RetinaNet with ResNet-50 achieves 39.1% in mAP with GID on COCO dataset, which surpasses the baseline 36.2% by 2.9%, and even better than the ResNet-101 based teacher model with 38.1% AP.
We present an approach to synthesize highly photorealistic images of 3D object models, which we use to train a convolutional neural network for detecting the objects in real images. The proposed approach has three key ingredients: (1) 3D object models are rendered in 3D models of complete scenes with realistic materials and lighting, (2) plausible geometric configuration of objects and cameras in a scene is generated using physics simulations, and (3) high photorealism of the synthesized images achieved by physically based rendering. When trained on images synthesized by the proposed approach, the Faster R-CNN object detector achieves a 24% absolute improvement of [email protected] on Rutgers APC and 11% on LineMod-Occluded datasets, compared to a baseline where the training images are synthesized by rendering object models on top of random photographs. This work is a step towards being able to effectively train object detectors without capturing or annotating any real images. A dataset of 600K synthetic images with ground truth annotations for various computer vision tasks will be released on the project website: thodan.github.io/objectsynth.
266 - Tianning Yuan 2021
Despite the substantial progress of active learning for image recognition, there still lacks an instance-level active learning method specified for object detection. In this paper, we propose Multiple Instance Active Object Detection (MI-AOD), to select the most informative images for detector training by observing instance-level uncertainty. MI-AOD defines an instance uncertainty learning module, which leverages the discrepancy of two adversarial instance classifiers trained on the labeled set to predict instance uncertainty of the unlabeled set. MI-AOD treats unlabeled images as instance bags and feature anchors in images as instances, and estimates the image uncertainty by re-weighting instances in a multiple instance learning (MIL) fashion. Iterative instance uncertainty learning and re-weighting facilitate suppressing noisy instances, toward bridging the gap between instance uncertainty and image-level uncertainty. Experiments validate that MI-AOD sets a solid baseline for instance-level active learning. On commonly used object detection datasets, MI-AOD outperforms state-of-the-art methods with significant margins, particularly when the labeled sets are small. Code is available at https://github.com/yuantn/MI-AOD.
Although deep convolutional neural networks(CNNs) have achieved remarkable results on object detection and segmentation, pre- and post-processing steps such as region proposals and non-maximum suppression(NMS), have been required. These steps result in high computational complexity and sensitivity to hyperparameters, e.g. thresholds for NMS. In this work, we propose a novel end-to-end trainable deep neural network architecture, which consists of convolutional and recurrent layers, that generates the correct number of object instances and their bounding boxes (or segmentation masks) given an image, using only a single network evaluation without any pre- or post-processing steps. We have tested on detecting digits in multi-digit images synthesized using MNIST, automatically segmenting digits in these images, and detecting cars in the KITTI benchmark dataset. The proposed approach outperforms a strong CNN baseline on the synthesized digits datasets and shows promising results on KITTI car detection.
98 - Lv Tang , Bo Li , Shouhong Ding 2021
Aiming at discovering and locating most distinctive objects from visual scenes, salient object detection (SOD) plays an essential role in various computer vision systems. Coming to the era of high resolution, SOD methods are facing new challenges. The major limitation of previous methods is that they try to identify the salient regions and estimate the accurate objects boundaries simultaneously with a single regression task at low-resolution. This practice ignores the inherent difference between the two difficult problems, resulting in poor detection quality. In this paper, we propose a novel deep learning framework for high-resolution SOD task, which disentangles the task into a low-resolution saliency classification network (LRSCN) and a high-resolution refinement network (HRRN). As a pixel-wise classification task, LRSCN is designed to capture sufficient semantics at low-resolution to identify the definite salient, background and uncertain image regions. HRRN is a regression task, which aims at accurately refining the saliency value of pixels in the uncertain region to preserve a clear object boundary at high-resolution with limited GPU memory. It is worth noting that by introducing uncertainty into the training process, our HRRN can well address the high-resolution refinement task without using any high-resolution training data. Extensive experiments on high-resolution saliency datasets as well as some widely used saliency benchmarks show that the proposed method achieves superior performance compared to the state-of-the-art methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا