Do you want to publish a course? Click here

General Instance Distillation for Object Detection

92   0   0.0 ( 0 )
 Added by Xing Dai
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In recent years, knowledge distillation has been proved to be an effective solution for model compression. This approach can make lightweight student models acquire the knowledge extracted from cumbersome teacher models. However, previous distillation methods of detection have weak generalization for different detection frameworks and rely heavily on ground truth (GT), ignoring the valuable relation information between instances. Thus, we propose a novel distillation method for detection tasks based on discriminative instances without considering the positive or negative distinguished by GT, which is called general instance distillation (GID). Our approach contains a general instance selection module (GISM) to make full use of feature-based, relation-based and response-based knowledge for distillation. Extensive results demonstrate that the student model achieves significant AP improvement and even outperforms the teacher in various detection frameworks. Specifically, RetinaNet with ResNet-50 achieves 39.1% in mAP with GID on COCO dataset, which surpasses the baseline 36.2% by 2.9%, and even better than the ResNet-101 based teacher model with 38.1% AP.



rate research

Read More

Knowledge distillation (KD) has witnessed its powerful ability in learning compact models in deep learning field, but it is still limited in distilling localization information for object detection. Existing KD methods for object detection mainly focus on mimicking deep features between teacher model and student model, which not only is restricted by specific model architectures, but also cannot distill localization ambiguity. In this paper, we first propose localization distillation (LD) for object detection. In particular, our LD can be formulated as standard KD by adopting the general localization representation of bounding box. Our LD is very flexible, and is applicable to distill localization ambiguity for arbitrary architecture of teacher model and student model. Moreover, it is interesting to find that Self-LD, i.e., distilling teacher model itself, can further boost state-of-the-art performance. Second, we suggest a teacher assistant (TA) strategy to fill the possible gap between teacher model and student model, by which the distillation effectiveness can be guaranteed even the selected teacher model is not optimal. On benchmark datasets PASCAL VOC and MS COCO, our LD can consistently improve the performance for student detectors, and also boosts state-of-the-art detectors notably. Our source code and trained models are publicly available at https://github.com/HikariTJU/LD
The existing solutions for object detection distillation rely on the availability of both a teacher model and ground-truth labels. We propose a new perspective to relax this constraint. In our framework, a student is first trained with pseudo labels generated by the teacher, and then fine-tuned using labeled data, if any available. Extensive experiments demonstrate improvements over existing object detection distillation algorithms. In addition, decoupling the teacher and ground-truth distillation in this framework provides interesting properties such: as 1) using unlabeled data to further improve the students performance, 2) combining multiple teacher models of different architectures, even with different object categories, and 3) reducing the need for labeled data (with only 20% of COCO labels, this method achieves the same performance as the model trained on the entire set of labels). Furthermore, a by-product of this approach is the potential usage for domain adaptation. We verify these properties through extensive experiments.
Knowledge distillation methods are proved to be promising in improving the performance of neural networks and no additional computational expenses are required during the inference time. For the sake of boosting the accuracy of object detection, a great number of knowledge distillation methods have been proposed particularly designed for object detection. However, most of these methods only focus on feature-level distillation and label-level distillation, leaving the label assignment step, a unique and paramount procedure for object detection, by the wayside. In this work, we come up with a simple but effective knowledge distillation approach focusing on label assignment in object detection, in which the positive and negative samples of student network are selected in accordance with the predictions of teacher network. Our method shows encouraging results on the MSCOCO2017 benchmark, and can not only be applied to both one-stage detectors and two-stage detectors but also be utilized orthogonally with other knowledge distillation methods.
We present an approach to synthesize highly photorealistic images of 3D object models, which we use to train a convolutional neural network for detecting the objects in real images. The proposed approach has three key ingredients: (1) 3D object models are rendered in 3D models of complete scenes with realistic materials and lighting, (2) plausible geometric configuration of objects and cameras in a scene is generated using physics simulations, and (3) high photorealism of the synthesized images achieved by physically based rendering. When trained on images synthesized by the proposed approach, the Faster R-CNN object detector achieves a 24% absolute improvement of [email protected] on Rutgers APC and 11% on LineMod-Occluded datasets, compared to a baseline where the training images are synthesized by rendering object models on top of random photographs. This work is a step towards being able to effectively train object detectors without capturing or annotating any real images. A dataset of 600K synthetic images with ground truth annotations for various computer vision tasks will be released on the project website: thodan.github.io/objectsynth.
266 - Tianning Yuan 2021
Despite the substantial progress of active learning for image recognition, there still lacks an instance-level active learning method specified for object detection. In this paper, we propose Multiple Instance Active Object Detection (MI-AOD), to select the most informative images for detector training by observing instance-level uncertainty. MI-AOD defines an instance uncertainty learning module, which leverages the discrepancy of two adversarial instance classifiers trained on the labeled set to predict instance uncertainty of the unlabeled set. MI-AOD treats unlabeled images as instance bags and feature anchors in images as instances, and estimates the image uncertainty by re-weighting instances in a multiple instance learning (MIL) fashion. Iterative instance uncertainty learning and re-weighting facilitate suppressing noisy instances, toward bridging the gap between instance uncertainty and image-level uncertainty. Experiments validate that MI-AOD sets a solid baseline for instance-level active learning. On commonly used object detection datasets, MI-AOD outperforms state-of-the-art methods with significant margins, particularly when the labeled sets are small. Code is available at https://github.com/yuantn/MI-AOD.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا