Do you want to publish a course? Click here

Photorealistic Image Synthesis for Object Instance Detection

135   0   0.0 ( 0 )
 Added by Tomas Hodan
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present an approach to synthesize highly photorealistic images of 3D object models, which we use to train a convolutional neural network for detecting the objects in real images. The proposed approach has three key ingredients: (1) 3D object models are rendered in 3D models of complete scenes with realistic materials and lighting, (2) plausible geometric configuration of objects and cameras in a scene is generated using physics simulations, and (3) high photorealism of the synthesized images achieved by physically based rendering. When trained on images synthesized by the proposed approach, the Faster R-CNN object detector achieves a 24% absolute improvement of [email protected] on Rutgers APC and 11% on LineMod-Occluded datasets, compared to a baseline where the training images are synthesized by rendering object models on top of random photographs. This work is a step towards being able to effectively train object detectors without capturing or annotating any real images. A dataset of 600K synthetic images with ground truth annotations for various computer vision tasks will be released on the project website: thodan.github.io/objectsynth.



rate research

Read More

266 - Tianning Yuan 2021
Despite the substantial progress of active learning for image recognition, there still lacks an instance-level active learning method specified for object detection. In this paper, we propose Multiple Instance Active Object Detection (MI-AOD), to select the most informative images for detector training by observing instance-level uncertainty. MI-AOD defines an instance uncertainty learning module, which leverages the discrepancy of two adversarial instance classifiers trained on the labeled set to predict instance uncertainty of the unlabeled set. MI-AOD treats unlabeled images as instance bags and feature anchors in images as instances, and estimates the image uncertainty by re-weighting instances in a multiple instance learning (MIL) fashion. Iterative instance uncertainty learning and re-weighting facilitate suppressing noisy instances, toward bridging the gap between instance uncertainty and image-level uncertainty. Experiments validate that MI-AOD sets a solid baseline for instance-level active learning. On commonly used object detection datasets, MI-AOD outperforms state-of-the-art methods with significant margins, particularly when the labeled sets are small. Code is available at https://github.com/yuantn/MI-AOD.
Training an object detector on a data-rich domain and applying it to a data-poor one with limited performance drop is highly attractive in industry, because it saves huge annotation cost. Recent research on unsupervised domain adaptive object detection has verified that aligning data distributions between source and target images through adversarial learning is very useful. The key is when, where and how to use it to achieve best practice. We propose Image-Instance Full Alignment Networks (iFAN) to tackle this problem by precisely aligning feature distributions on both image and instance levels: 1) Image-level alignment: multi-scale features are roughly aligned by training adversarial domain classifiers in a hierarchically-nested fashion. 2) Full instance-level alignment: deep semantic information and elaborate instance representations are fully exploited to establish a strong relationship among categories and domains. Establishing these correlations is formulated as a metric learning problem by carefully constructing instance pairs. Above-mentioned adaptations can be integrated into an object detector (e.g. Faster RCNN), resulting in an end-to-end trainable framework where multiple alignments can work collaboratively in a coarse-tofine manner. In two domain adaptation tasks: synthetic-to-real (SIM10K->Cityscapes) and normal-to-foggy weather (Cityscapes->Foggy Cityscapes), iFAN outperforms the state-of-the-art methods with a boost of 10%+ AP over the source-only baseline.
This manuscript introduces the problem of prominent object detection and recognition inspired by the fact that human seems to priorities perception of scene elements. The problem deals with finding the most important region of interest, segmenting the relevant item/object in that area, and assigning it an object class label. In other words, we are solving the three problems of saliency modeling, saliency detection, and object recognition under one umbrella. The motivation behind such a problem formulation is (1) the benefits to the knowledge representation-based vision pipelines, and (2) the potential improvements in emulating bio-inspired vision systems by solving these three problems together. We are foreseeing extending this problem formulation to fully semantically segmented scenes with instance object priority for high-level inferences in various applications including assistive vision. Along with a new problem definition, we also propose a method to achieve such a task. The proposed model predicts the most important area in the image, segments the associated objects, and labels them. The proposed problem and method are evaluated against human fixations, annotated segmentation masks, and object class categories. We define a chance level for each of the evaluation criterion to compare the proposed algorithm with. Despite the good performance of the proposed baseline, the overall evaluations indicate that the problem of prominent object detection and recognition is a challenging task that is still worth investigating further.
91 - Xing Dai , Zeren Jiang , Zhao Wu 2021
In recent years, knowledge distillation has been proved to be an effective solution for model compression. This approach can make lightweight student models acquire the knowledge extracted from cumbersome teacher models. However, previous distillation methods of detection have weak generalization for different detection frameworks and rely heavily on ground truth (GT), ignoring the valuable relation information between instances. Thus, we propose a novel distillation method for detection tasks based on discriminative instances without considering the positive or negative distinguished by GT, which is called general instance distillation (GID). Our approach contains a general instance selection module (GISM) to make full use of feature-based, relation-based and response-based knowledge for distillation. Extensive results demonstrate that the student model achieves significant AP improvement and even outperforms the teacher in various detection frameworks. Specifically, RetinaNet with ResNet-50 achieves 39.1% in mAP with GID on COCO dataset, which surpasses the baseline 36.2% by 2.9%, and even better than the ResNet-101 based teacher model with 38.1% AP.
Vanilla models for object detection and instance segmentation suffer from the heavy bias toward detecting frequent objects in the long-tailed setting. Existing methods address this issue mostly during training, e.g., by re-sampling or re-weighting. In this paper, we investigate a largely overlooked approach -- post-processing calibration of confidence scores. We propose NorCal, Normalized Calibration for long-tailed object detection and instance segmentation, a simple and straightforward recipe that reweighs the predicted scores of each class by its training sample size. We show that separately handling the background class and normalizing the scores over classes for each proposal are keys to achieving superior performance. On the LVIS dataset, NorCal can effectively improve nearly all the baseline models not only on rare classes but also on common and frequent classes. Finally, we conduct extensive analysis and ablation studies to offer insights into various modeling choices and mechanisms of our approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا