Do you want to publish a course? Click here

Observational Evidence for a Thick Disk of Dark Molecular Gas in the Outer Galaxy

151   0   0.0 ( 0 )
 Added by Michael Busch
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the serendipitous discovery of an extremely broad ($Delta V_{LSR} sim 150$ km/s), faint ($T_{mb} < 10 textrm{mK}$), and ubiquitous 1667 and 1665 MHz ground-state thermal OH emission towards the 2nd quadrant of the outer Galaxy ($R_{gal}$ > 8 kpc) with the Green Bank Telescope. Originally discovered in 2015, we describe the redundant experimental, observational, and data quality tests of this result over the last five years. The longitude-velocity distribution of the emission unambiguously suggests large-scale Galactic structure. We observe a smooth distribution of OH in radial velocity that is morphologically similar to the HI radial velocity distribution in the outer Galaxy, showing that molecular gas is significantly more extended in the outer Galaxy than previously expected. Our results imply the existence of a thick ($-200< z < 200$ pc) disk of diffuse ($n_{H_{2}}$ $sim$ 5 $times$ 10$^{-3}$ cm$^{-3}$) molecular gas in the Outer Galaxy previously undetected in all-sky CO surveys.



rate research

Read More

157 - Marion Dierickx 2010
We test competing models that aim at explaining the nature of stars in the Milky Way that are well away (|z|$gtrsim$ 1kpc) from the midplane, the so-called thick disk: the stars may have gotten there through orbital migration, through satellite mergers and accretion, or through heating of pre-existing thin disk stars. Sales et al. (2009) proposed the eccentricity distribution of thick disk stars as a diagnostic to differentiate between these mechanisms. Drawing on SDSS DR7, we have assembled a sample of 34,223 G-dwarfs with 6-D phase-space information and metallicities, and have derived orbital eccentricities for them. Comparing the resulting eccentricity distributions, p(e|z), with the models, we find that: a) the observed p(e|z) is inconsistent with that predicted by orbital migration only, as there are more observed stars of high and of very low eccentricity; b) scenarios where the thick disk is made predominantly through abrupt heating of a pre-existing thin disk are also inconsistent, as they predict more high-eccentricity stars than observed; c) the observed p(e|z) fits well with a gas-rich merger scenario, where most thick disk stars were born from unsettled gas in situ.
We employ the earlier published proper motions of the newly discovered Antlia 2 dwarf galaxy derived from Gaia data to calculate its orbital distribution in the cosmologically recent past. Using these observationally motivated orbits, we calculate the effect of the Antlia 2 dwarf galaxy on the outer HI disk of the Milky Way, using both test particle and Smoothed Particle Hydrodynamics simulations. We find that orbits with low pericenters, $sim$ 10 kpc, produce disturbances that match the observed outer HI disk perturbations. We have independently recalculated the proper motion of the Antlia 2 dwarf from Gaia data and found a proper motion of $(mu_{alpha}cosdelta, mu_{delta}) = (-0.068,0.032) pm (0.023,-0.031)~rm mas/yr$, which agrees with results from Torrealba et al. (2019) within the errors, but gives lower mean pericenters, e.g., $sim$ 15 kpc for our fiducial model of the Milky Way. We also show that the Sagittarius dwarf galaxy interaction does not match the observed perturbations in the outer gas disk. Thus, Antlia 2 may be the driver of the observed large perturbations in the outer gas disk of the Galaxy. The current location of the Antlia 2 dwarf galaxy closely matches that predicted by an earlier dynamical analysis (Chakrabarti & Blitz 2009) of the dwarf that drove ripples in the outer Galaxy, and, in particular, its orbit is nearly coplanar to the Galactic disk. If the Antlia 2 dwarf galaxy is responsible for the perturbations in the outer Galactic disk, it would have a specific range of proper motions that we predict here; this can be tested soon with Gaia DR-3 and Gaia DR-4 data.
409 - Sami Dib 2009
Supernova explosions inject a considerable amount of energy into the interstellar medium (ISM) in regions with high to moderate star formation rates. In order to assess whether the driving of turbulence by supernovae is also important in the outer Galactic disk, where the star formation rates are lower, we study the spatial distribution of molecular cloud (MC) inclinations with respect to the Galactic plane. The latter contains important information on the nature of the mechanism of energy injection into the ISM. We analyze the spatial correlations between the position angles (PAs) of a selected sample of MCs (the largest clouds in the catalogue of the outer Galaxy published by Heyer et al. 2001). Our results show that when the PAs of the clouds are all mapped to values into the [0,90]degrees interval, there is a significant degree of spatial correlation between the $PA$s on spatial scales in the range of 100-800 pc. These scales are of the order of the sizes of individual SN shells in low density environments such as those prevailing in the outer Galaxy and where the metallicity of the ambient gas is of the order of the solar value or smaller. These findings suggest that individual SN explosions, occurring in the outer regions of the Galaxy and in likewise spiral galaxies, albeit at lower rates, continue to play an important role in shaping the structure and dynamics of the ISM in those regions. The SN explosions we postulate here are likely associated with the existence of young stellar clusters in the far outer regions of the Galaxy and the UV emission and low levels of star formation observed with the GALEX satellite in the outer regions of local galaxies.
A thick dark matter disk is predicted in cold dark matter simulations as the outcome of the interaction between accreted satellites and the stellar disk in Milky Way sized halos. We study the effects of a self-interacting thick dark disk on the energetic neutrino flux from the Sun. We find that for particle masses between 100 GeV and 1 TeV and dark matter annihilation to heavy leptons either the self-interaction may not be strong enough to solve the small scale structure motivation or a dark disk cannot be present in the Milky Way.
In the last few years new evidence has been presented for the presence of ongoing massive star formation in the outer HI disks of galaxies. These discoveries strongly suggest that precursor molecular gas must also be present in some physical state which is escaping detection by the usual means (CO(1-0), IR, etc.). We present a model for such a gas in a framework which views the HI as the result of an ongoing ``photodissociation <--> dust grain reformation equilibrium in a cold, clumpy molecular medium with a small area filling factor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا