Do you want to publish a course? Click here

NewsCLIPpings: Automatic Generation of Out-of-Context Multimodal Media

90   0   0.0 ( 0 )
 Added by Anna Rohrbach
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The threat of online misinformation is hard to overestimate, with adversaries relying on a range of tools, from cheap fakes to sophisticated deep fakes. We are motivated by a threat scenario where an image is being used out of context to support a certain narrative expressed in a caption. While some prior datasets for detecting image-text inconsistency can be solved with blind models due to linguistic cues introduced by text manipulation, we propose a dataset where both image and text are unmanipulated but mismatched. We introduce several strategies for automatic retrieval of suitable images for the given captions, capturing cases with related semantics but inconsistent entities as well as matching entities but inconsistent semantic context. Our large-scale automatically generated NewsCLIPpings Dataset requires models to jointly analyze both modalities and to reason about entity mismatch as well as semantic mismatch between text and images in news media.

rate research

Read More

We present textsc{Vx2Text}, a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio. In order to leverage transformer networks, which have been shown to be effective at modeling language, each modality is first converted into a set of language embeddings by a learnable tokenizer. This allows our approach to perform multimodal fusion in the language space, thus eliminating the need for ad-hoc cross-modal fusion modules. To address the non-differentiability of tokenization on continuous inputs (e.g., video or audio), we utilize a relaxation scheme that enables end-to-end training. Furthermore, unlike prior encoder-only models, our network includes an autoregressive decoder to generate open-ended text from the multimodal embeddings fused by the language encoder. This renders our approach fully generative and makes it directly applicable to different video+$x$ to text problems without the need to design specialized network heads for each task. The proposed framework is not only conceptually simple but also remarkably effective: experiments demonstrate that our approach based on a single architecture outperforms the state-of-the-art on three video-based text-generation tasks -- captioning, question answering and audio-visual scene-aware dialog.
Recently, chest X-ray report generation, which aims to automatically generate descriptions of given chest X-ray images, has received growing research interests. The key challenge of chest X-ray report generation is to accurately capture and describe the abnormal regions. In most cases, the normal regions dominate the entire chest X-ray image, and the corresponding descriptions of these normal regions dominate the final report. Due to such data bias, learning-based models may fail to attend to abnormal regions. In this work, to effectively capture and describe abnormal regions, we propose the Contrastive Attention (CA) model. Instead of solely focusing on the current input image, the CA model compares the current input image with normal images to distill the contrastive information. The acquired contrastive information can better represent the visual features of abnormal regions. According to the experiments on the public IU-X-ray and MIMIC-CXR datasets, incorporating our CA into several existing models can boost their performance across most metrics. In addition, according to the analysis, the CA model can help existing models better attend to the abnormal regions and provide more accurate descriptions which are crucial for an interpretable diagnosis. Specifically, we achieve the state-of-the-art results on the two public datasets.
Huge amounts of digital videos are being produced and broadcast every day, leading to giant media archives. Effective techniques are needed to make such data accessible further. Automatic meta-data labelling of broadcast media is an essential task for multimedia indexing, where it is standard to use multi-modal input for such purposes. This paper describes a novel method for automatic detection of media genre and show identities using acoustic features, textual features or a combination thereof. Furthermore the inclusion of available meta-data, such as time of broadcast, is shown to lead to very high performance. Latent Dirichlet Allocation is used to model both acoustics and text, yielding fixed dimensional representations of media recordings that can then be used in Support Vector Machines based classification. Experiments are conducted on more than 1200 hours of TV broadcasts from the British Broadcasting Corporation (BBC), where the task is to categorise the broadcasts into 8 genres or 133 show identities. On a 200-hour test set, accuracies of 98.6% and 85.7% were achieved for genre and show identification respectively, using a combination of acoustic and textual features with meta-data.
170 - Huaishao Luo , Lei Ji , Botian Shi 2020
With the recent success of the pre-training technique for NLP and image-linguistic tasks, some video-linguistic pre-training works are gradually developed to improve video-text related downstream tasks. However, most of the existing multimodal models are pre-trained for understanding tasks, leading to a pretrain-finetune discrepancy for generation tasks. This paper proposes UniVL: a Unified Video and Language pre-training model for both multimodal understanding and generation. It comprises four components, including two single-modal encoders, a cross encoder, and a decoder with the Transformer backbone. Five objectives, including video-text joint, conditioned masked language model (CMLM), conditioned masked frame model (CMFM), video-text alignment, and language reconstruction, are designed to train each of the components. We further develop two pre-training strategies, stage by stage pre-training (StagedP) and enhanced video representation (EnhancedV), to make the training process of the UniVL more effective. The pre-train is carried out on a sizeable instructional video dataset HowTo100M. Experimental results demonstrate that the UniVL can learn strong video-text representation and achieves state-of-the-art results on five downstream tasks.
Occlusion removal is an interesting application of image enhancement, for which, existing work suggests manually-annotated or domain-specific occlusion removal. No work tries to address automatic occlusion detection and removal as a context-aware generic problem. In this paper, we present a novel methodology to identify objects that do not relate to the image context as occlusions and remove them, reconstructing the space occupied coherently. The proposed system detects occlusions by considering the relation between foreground and background object classes represented as vector embeddings, and removes them through inpainting. We test our system on COCO-Stuff dataset and conduct a user study to establish a baseline in context-aware automatic occlusion removal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا