Do you want to publish a course? Click here

Inequalities for rational functions with prescribed poles

80   0   0.0 ( 0 )
 Added by Aaqib Iqbal Wadoo
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

For rational functions, we use simple but elegant techniques to strengthen generalizations of certain results which extend some widely known polynomial inequalities of Erdos-Lax and Turan to rational functions R. In return these reinforced results, in the limiting case, lead to the corresponding refinements of the said polynomial inequalities. As an illustration and as an application of our results, we obtain some new improvements of the Erdos-Lax and Turan type inequalities for polynomials. These improved results take into account the size of the constant term and the leading coefficient of the given polynomial. As a further factor of consideration, during the course of this paper we shall demonstrate how some recently obtained results due to S. L. Wali and W. M. Shah, [Some applications of Dubinins lemma to rational functions with prescribed poles, J. Math.Anal.Appl.450 (2017) 769-779], could have been proved without invoking the results



rate research

Read More

Classical Schur analysis is intimately connected to the theory of orthogonal polynomials on the circle [Simon, 2005]. We investigate here the connection between multipoint Schur analysis and orthogonal rational functions. Specifically, we study the convergence of the Wall rational functions via the development of a rational analogue to the SzegH o theory, in the case where the interpolation points may accumulate on the unit circle. This leads us to generalize results from [Khrushchev,2001], [Bultheel et al., 1999], and yields asymptotics of a novel type.
254 - Beno^it F. Sehba 2017
We prove in this note one weight norm inequalities for some positive Bergman-type operators.
158 - Kelly Bickel , Joseph A. Cima , 2021
We analyze the fine structure of Clark measures and Clark isometries associated with two-variable rational inner functions on the bidisk. In the degree (n,1) case, we give a complete description of supports and weights for both generic and exceptional Clark measures, characterize when the associated embedding operators are unitary, and give a formula for those embedding operators. We also highlight connections between our results and both the structure of Agler decompositions and study of extreme points for the set of positive pluriharmonic measures on 2-torus.
128 - R. Klen , M. Visuri , M. Vuorinen 2010
This paper deals with some inequalities for trigonometric and hyperbolic functions such as the Jordan inequality and its generalizations. In particular, lower and upper bounds for functions such as (sin x)/x and x/(sinh x) are proved.
Famous Redheffers inequality is generalized to a class of anti-periodic functions. We apply the novel inequality to the generalized trigonometric functions and establish several Redheffer-type inequalities for these functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا