Do you want to publish a course? Click here

Multiple-Fold Fermions and Topological Fermi Arcs Induced Catalytic Enhancement in Nanoporous Electride C12A7

60   0   0.0 ( 0 )
 Added by Xiaoming Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological materials are recently regarded as the idea catalysts due to the protected surface metallic states and high carrier mobility, however the fundamental mechanism and the underlying relationship between the catalytic performance and topological states are in debate. Here, by means of symmetry analysis and first-principles calculations, we discover that the electride material of C12A7 hosts the multiple-fold fermions due to the interstitial-electrons, with the sixfold- and fourfold- degenerate points locating at high symmetric points near the Fermi energy, which are identified as the underlying reason of the enhanced catalytic ability in C12A7-based catalysts. The multiple-fold fermions exhibit much longer Fermi arcs on the (001) surface than traditional Weyl/Dirac fermions, the surface is thus highly chemical active and possesses a low Gibbs free energy for the hydrogen evolution reaction. The underlying relationship between catalytic performance and the topological surface state is explicitly verified by artificially hole doping, external strain and similar electride without the Fermi arcs, where the Gibbs free energies are significantly increased when the Fermi arcs is shifted to higher energy level. This work offers a guiding principle for understanding catalytic nature of electrides and the topological quantum catalysts.

rate research

Read More

181 - J.-Z. Ma , J.-B. He , Y.-F. Xu 2017
Topological Dirac and Weyl semimetals not only host quasiparticles analogous to the elementary fermionic particles in high-energy physics, but also have nontrivial band topology manifested by exotic Fermi arcs on the surface. Recent advances suggest new types of topological semimetals, in which spatial symmetries protect gapless electronic excitations without high-energy analogy. Here we observe triply-degenerate nodal points (TPs) near the Fermi level of WC, in which the low-energy quasiparticles are described as three-component fermions distinct from Dirac and Weyl fermions. We further observe the surface states whose constant energy contours are pairs of Fermi arcs connecting the surface projection of the TPs, proving the nontrivial topology of the newly identified semimetal state.
Quantum materials hosting Weyl fermions have opened a new era of research in condensed matter physics. First proposed in 1929 in particle physics, Weyl fermions have yet to be observed as elementary particles. In 2015, Weyl fermions were detected as collective electronic excitations in the strong spin-orbit coupled material tantalum arsenide, TaAs. This discovery was followed by a flurry of experimental and theoretical explorations of Weyl phenomena in materials. Weyl materials naturally lend themselves to the exploration of the topological index associated with Weyl fermions and their divergent Berry curvature field, as well as the topological bulk-boundary correspondence giving rise to protected conducting surface states. Here, we review the broader class of Weyl topological phenomena in materials, starting with the observation of emergent Weyl fermions in the bulk and of Fermi arc states on the surface of the TaAs family of crystals by photoemission spectroscopy. We then discuss some of the exotic optical and magnetic responses observed in these materials, as well as the progress in developing some of the related chiral materials. We discuss the conceptual development of high-fold chiral fermions, which generalize Weyl fermions, and we review the observation of high-fold chiral fermion phases by taking the rhodium silicide, RhSi, family of crystals as a prime example. Lastly, we discuss recent advances in Weyl-line phases in magnetic topological materials. With this Review, we aim to provide an introduction to the basic concepts underlying Weyl physics in condensed matter, and to representative materials and their electronic structures and topology as revealed by spectroscopic studies. We hope this work serves as a guide for future theoretical and experimental explorations of chiral fermions and related topological quantum systems with potentially enhanced functionalities.
Recent experimental observations of Weyl fermions in materials opens a new frontier of condensed matter physics. Based on first-principles calculations, we here discover Weyl fermions in a two-dimensional layered electride material Y$_2$C. We find that the Y 4$d$ orbitals and the anionic $s$-like orbital confined in the interstitial spaces between [Y$_2$C]$^{2+}$ cationic layers are hybridized to give rise to van Have singularities near the Fermi energy $E_{rm F}$, which induce a ferromagnetic (FM) order via the Stoner-type instability. This FM phase with broken time-reversal symmetry hosts the rotation-symmetry protected Weyl nodal lines near $E_{rm F}$, which are converted into the multiple pairs of Weyl nodes by including spin-orbit coupling (SOC). However, we reveal that, due to its small SOC effects, Y$_2$C has a topologically nontrivial drumhead-like surface state near $E_{rm F}$ as well as a very small magnetic anisotropy energy with several ${mu}$eV per unit cell, consistent with the observed surface state and paramagnetism at low temperatures below ${sim}$2 K. Our findings propose that the Brillouin zone coordinates of Weyl fermions hidden in paramagnetic electride materials would fluctuate in momentum space with random orientations of the magnetization direction.
119 - A. Tamai , Q. S. Wu , I. Cucchi 2016
We report a combined experimental and theoretical study of the candidate type-II Weyl semimetal MoTe2. Using laser-based angle-resolved photoemission we resolve multiple distinct Fermi arcs on the inequivalent top and bottom (001) surfaces. All surface states observed experimentally are reproduced by an electronic structure calculation for the experimental crystal structure that predicts a topological Weyl semimetal state with 8 type-II Weyl points. We further use systematic electronic structure calculations simulating different Weyl point arrangements to discuss the robustness of the identified Weyl semimetal state and the topological character of Fermi arcs in MoTe2.
Exotic massless fermionic excitations with non-zero Berry flux, other than Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with 3-fold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe and CoGe, when the spin-orbit coupling (SOC) is considered. Their non-trivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on side surface, which is confirmed by (010) surface electronic spectra of CoSi. In addition, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا