Do you want to publish a course? Click here

Potential theory with multivariate kernels

88   0   0.0 ( 0 )
 Added by Oleksandr Vlasiuk
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In the present paper we develop the theory of minimization for energies with multivariate kernels, i.e. energies, in which pairwise interactions are replaced by interactions between triples or, more generally, $n$-tuples of particles. Such objects, which arise naturally in various fields, present subtle differences and complications when compared to the classical two-input case. We introduce appropriate analogues of conditionally positive definite kernels, establish a series of relevant results in potential theory, explore rotationally invariant energies on the sphere, and present a variety of interesting examples, in particular, some optimization problems in probabilistic geometry which are related to multivaria



rate research

Read More

Volterra integral operators with non-sign-definite degenerate kernels $A(x,t)= sum_{k=0}^n A_k(x,t)$, $A_k(x,t)= a_k (x) t^k$, are studied acting from one weighted $L_2$ space on $(0,+infty)$ to another. Imposing an integral doubling condition on one of the weights, it is shown that the operator with the kernel $A(x,t)$ is bounded if and only $n+1$ operators with kernels $A_k(x,t)$ are all bounded. We apply this result to describe spaces of pointwise multipliers in weighted Sobolev spaces on $(0,+infty)$.
231 - E.B. Saff 2010
We provide an introduction to logarithmic potential theory in the complex plane that particularly emphasizes its usefulness in the theory of polynomial and rational approximation. The reader is invited to explore the notions of Fekete points, logarithmic capacity, and Chebyshev constant through a variety of examples and exercises. Many of the fundamental theorems of potential theory, such as Frostmans theorem, the Riesz Decomposition Theorem, the Principle of Domination, etc., are given along with essential ideas for their proofs. Equilibrium measures and potentials and their connections with Green functions and conformal mappings are presented. Moreover, we discuss extensions of the classical potential theoretic results to the case when an external field is present.
We establish $L^2$ boundedness of all nice parabolic singular integrals on Good Parabolic Graphs, aka {em regular} Lip(1,1/2) graphs. The novelty here is that we include non-homogeneous kernels, which are relevant to the theory of parabolic uniform rectifiability. Previously, the third named author had treated the case of homogeneous kernels. The present proof combines the methods of that work (which in turn was based on methods described in Christs CBMS lecture notes), with the techniques of Coifman-David-Meyer. This is a very preliminary draft. Eventually, these results will be part of a more extensive work on parabolic uniform rectifiability and singular integrals.
Many possible definitions have been proposed for fractional derivatives and integrals, starting from the classical Riemann-Liouville formula and its generalisations and modifying it by replacing the power function kernel with other kernel functions. We demonstrate, under some assumptions, how all of these modifications can be considered as special cases of a single, unifying, model of fractional calculus. We provide a fundamental connection with classical fractional calculus by writing these general fractional operators in terms of the original Riemann-Liouville fractional integral operator. We also consider inversion properties of the new operators, prove analogues of the Leibniz and chain rules in this model of fractional calculus, and solve some fractional differential equations using the new operators.
In this paper we answer the following question: what is the infinitesimal generator of the diffusion process defined by a kernel that is normalized such that it is bi-stochastic with respect to a specified measure? More precisely, under the assumption that data is sampled from a Riemannian manifold we determine how the resulting infinitesimal generator depends on the potentially nonuniform distribution of the sample points, and the specified measure for the bi-stochastic normalization. In a special case, we demonstrate a connection to the heat kernel. We consider both the case where only a single data set is given, and the case where a data set and a reference set are given. The spectral theory of the constructed operators is studied, and Nystrom extension formulas for the gradients of the eigenfunctions are computed. Applications to discrete point sets and manifold learning are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا