Do you want to publish a course? Click here

Parabolic Singular Integrals with Nonhomogeneous Kernels

113   0   0.0 ( 0 )
 Added by Steven Hofmann
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We establish $L^2$ boundedness of all nice parabolic singular integrals on Good Parabolic Graphs, aka {em regular} Lip(1,1/2) graphs. The novelty here is that we include non-homogeneous kernels, which are relevant to the theory of parabolic uniform rectifiability. Previously, the third named author had treated the case of homogeneous kernels. The present proof combines the methods of that work (which in turn was based on methods described in Christs CBMS lecture notes), with the techniques of Coifman-David-Meyer. This is a very preliminary draft. Eventually, these results will be part of a more extensive work on parabolic uniform rectifiability and singular integrals.



rate research

Read More

Let $Omega$ be a function of homogeneous of degree zero and vanish on the unit sphere $mathbb {S}^n$. In this paper, we investigate the limiting weak-type behavior for singular integral operator $T_Omega$ associated with rough kernel $Omega$. We show that, if $Omegain Llog L(mathbb S^{n})$, then $lim_{lambdato0^+}lambda|{xinmathbb{R}^n:|T_Omega(f)(x)|>lambda}| = n^{-1}|Omega|_{L^1(mathbb {S}^n)}|f|_{L^1(mathbb{R}^n)},quad0le fin L^1(mathbb{R}^n).$ Moreover,$(n^{-1}|Omega|_{L^1(mathbb{S}^{n-1})}$ is a lower bound of weak-type norm of $T_Omega$ when $Omegain Llog L(mathbb{S}^{n-1})$. Corresponding results for rough bilinear singular integral operators defined in the form $T_{vecOmega}(f_1,f_2) = T_{Omega_1}(f_1)cdot T_{Omega_2}(f_2)$ have also been established.
We consider the asymptotic behavior of the fluctuations for the empirical measures of interacting particle systems with singular kernels. We prove that the sequence of fluctuation processes converges in distribution to a generalized Ornstein-Uhlenbeck process. Our result considerably extends classical results to singular kernels, including the Biot-Savart law. The result applies to the point vortex model approximating the 2D incompressible Navier-Stokes equation and the 2D Euler equation. We also obtain Gaussianity and optimal regularity of the limiting Ornstein-Uhlenbeck process. The method relies on the martingale approach and the Donsker-Varadhan variational formula, which transfers the uniform estimate to some exponential integrals. Estimation of those exponential integrals follows by cancellations and combinatorics techniques and is of the type of large deviation principle.
142 - Shuichi Sato 2010
We consider singular integral operators and maximal singular integral operators with rough kernels on homogeneous groups. We prove certain estimates for the operators that imply $L^p$ boundedness of them by an extrapolation argument under a sharp condition for the kernels. Also, we prove some weighted $L^p$ inequalities for the operators.
214 - Shuichi Sato 2008
We prove certain $L^p$ estimates ($1<p<infty$) for non-isotropic singular integrals along surfaces of revolution. As an application we obtain $L^p$ boundedness of the singular integrals under a sharp size condition on their kernels.
The purpose of this paper is to establish some one-sided estimates for oscillatory singular integrals. The boundedness of certain oscillatory singular integral on weighted Hardy spaces $H^{1}_{+}(w)$ is proved. It is here also show that the $H^{1}_{+}(w)$ theory of oscillatory singular integrals above cannot be extended to the case of $H^{q}_{+}(w)$ when $0<q<1$ and $win A_{p}^{+}$, a wider weight class than the classical Muckenhoupt class. Furthermore, a criterion on the weighted $L^{p}$-boundednesss of the oscillatory singular integral is given.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا