Do you want to publish a course? Click here

Splitting of Volterra Integral Operators with Degenerate Kernels

291   0   0.0 ( 0 )
 Added by Slava Rychkov
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Volterra integral operators with non-sign-definite degenerate kernels $A(x,t)= sum_{k=0}^n A_k(x,t)$, $A_k(x,t)= a_k (x) t^k$, are studied acting from one weighted $L_2$ space on $(0,+infty)$ to another. Imposing an integral doubling condition on one of the weights, it is shown that the operator with the kernel $A(x,t)$ is bounded if and only $n+1$ operators with kernels $A_k(x,t)$ are all bounded. We apply this result to describe spaces of pointwise multipliers in weighted Sobolev spaces on $(0,+infty)$.



rate research

Read More

The relationship between the operator norms of fractional integral operators acting on weighted Lebesgue spaces and the constant of the weights is investigated. Sharp boundsare obtained for both the fractional integral operators and the associated fractional maximal functions. As an application improved Sobolev inequalities are obtained. Some of the techniques used include a sharp off-diagonal version of the extrapolation theorem of Rubio de Francia and characterizations of two-weight norm inequalities.
92 - Guoen Hu , Xiangxing Tao 2020
Let $Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{d-1}$, $T_{Omega}$ be the homogeneous singular integral operator with kernel $frac{Omega(x)}{|x|^d}$ and $T_{Omega,,b}$ be the commutator of $T_{Omega}$ with symbol $b$. In this paper, we prove that if $Omegain L(log L)^2(S^{d-1})$, then for $bin {rm BMO}(mathbb{R}^d)$, $T_{Omega,,b}$ satisfies an endpoint estimate of $Llog L$ type.
We establish that the Volterra-type integral operator $J_b$ on the Hardy spaces $H^p$ of the unit ball $mathbb{B}_n$ exhibits a rather strong rigid behavior. More precisely, we show that the compactness, strict singularity and $ell^p$-singularity of $J_b$ are equivalent on $H^p$ for any $1 le p < infty$. Moreover, we show that the operator $J_b$ acting on $H^p$ cannot fix an isomorphic copy of $ell^2$ when $p e 2.$
In the present paper we develop the theory of minimization for energies with multivariate kernels, i.e. energies, in which pairwise interactions are replaced by interactions between triples or, more generally, $n$-tuples of particles. Such objects, which arise naturally in various fields, present subtle differences and complications when compared to the classical two-input case. We introduce appropriate analogues of conditionally positive definite kernels, establish a series of relevant results in potential theory, explore rotationally invariant energies on the sphere, and present a variety of interesting examples, in particular, some optimization problems in probabilistic geometry which are related to multivaria
In the present paper, we are aiming to study limiting behavior of infinite dimensional Volterra operators. We introduce two classes $tilde {mathcal{V}}^+$ and $tilde{mathcal{V}}^-$of infinite dimensional Volterra operators. For operators taken from the introduced classes we study their omega limiting sets $omega_V$ and $omega_V^{(w)}$ with respect to $ell^1$-norm and pointwise convergence, respectively. To investigate the relations between these limiting sets, we study linear Lyapunov functions for such kind of Volterra operators. It is proven that if Volterra operator belongs to $tilde {mathcal{V}}^+$, then the sets and $omega_V^{(w)}(xb)$ coincide for every $xbin S$, and moreover, they are non empty. If Volterra operator belongs to $tilde {mathcal{V}}^-$, then $omega_V(xb)$ could be empty, and it implies the non-ergodicity (w.r.t $ell^1$-norm) of $V$, while it is weak ergodic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا