Do you want to publish a course? Click here

Magnetic Fields of CP Stars in the OrionOB1 Association. IV. Stars of Subgroup 1b

203   0   0.0 ( 0 )
 Added by Ilya Yakunin Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The paper presents magnetic field measurements for 15 chemically peculiar (CP) stars of subgroup~1b in the OrionOB1 association. We have found that the proportion of stars with strong magnetic fields among these 15 CP stars is almost twice as large as in subgroup 1a. Along with this, the age of subgroup 1b is estimated as 2 Myr, and the age of subgroup~1a is in the order of 10 Myr. The average root-mean-square magnetic field Be for stars in subgroup 1b is 2.3 times higher than that for stars in subgroup 1a. The conclusions obtained fall within the concept of the fossil origin of large-scale magnetic fields in B and A stars, but the rate of field weakening with age appears anomalously high. We present our results as an important observational test for calibrating the theory of stellar magnetic field formation and evolution.



rate research

Read More

The study of magnetic fields of cool chemically peculiar stars with effective temperatures less than 10 000 K is very important to understand the nature of their magnetism. We present new results of a long-term spectroscopic monitoring of the well-known magnetic star HD 178892. The analysis of spectra taken with the Russian 6-m telescope has revealed a periodic variation of the surface magnetic field from 17 to 23 kG. A revised rotational period of HD 178892 was extracted from the mean longitudinal field: 8.2549 days. We have continued the study of the components of the magnetic binary BD +40^{circ}175 started by V. Elkin at SAO RAS. Our measurements of magnetically splitted lines in the spectra of each component show the presence of strong magnetic fields in both components. The surface field in the case of the component A was about 14 kG at three different epochs. The component B possesses a slightly weaker field: B_{s} varies from 9 to 11 kG. A preliminary analysis of the chemical abundances allows us to make an assumption about the roAp nature of both components of BD +40^{circ}175.
Are the kG-strength magnetic fields observed in young stars a fossil field left over from their formation or are they generated by a dynamo? We use radiation non-ideal magnetohydrodynamics simulations of the gravitational collapse of a rotating, magnetized molecular cloud core over 17 orders of magnitude in density, past the first hydrostatic core to the formation of the second, stellar core, to examine the fossil field hypothesis. Whereas in previous work we found that magnetic fields in excess of 10 kG can be implanted in stars at birth, this assumed ideal magnetohydrodynamics (MHD), i.e. that the gas is coupled to the magnetic field. Here we present non-ideal MHD calculations which include Ohmic resistivity, ambipolar diffusion and the Hall effect. For realistic cosmic ray ionization rates, we find that magnetic field strengths of $lesssim$ kG are implanted in the stellar core at birth, ruling out a strong fossil field. While these results remain sensitive to resolution, they cautiously provide evidence against a fossil field origin for stellar magnetic fields, suggesting instead that magnetic fields in stars originate in a dynamo process.
Detection of magnetic fields has been reported in several sdO and sdB stars. Recent literature has cast doubts on the reliability of most of these detections. We revisit data previously published in the literature, and we present new observations to clarify the question of how common magnetic fields are in subdwarf stars. We consider a sample of about 40 hot subdwarf stars. About 30 of them have been observed with the FORS1 and FORS2 instruments of the ESO VLT. Here we present new FORS1 field measurements for 17 stars, 14 of which have never been observed for magnetic fields before. We also critically review the measurements already published in the literature, and in particular we try to explain why previous papers based on the same FORS1 data have reported contradictory results. All new and re-reduced measurements obtained with FORS1 are shown to be consistent with non-detection of magnetic fields. We explain previous spurious field detections from data obtained with FORS1 as due to a non-optimal method of wavelength calibration. Field detections in other surveys are found to be uncertain or doubtful, and certainly in need of confirmation. There is presently no strong evidence for the occurrence of a magnetic field in any sdB or sdO star, with typical longitudinal field uncertainties of the order of 2-400 G. It appears that globally simple fields of more than about 1 or 2 kG in strength occur in at most a few percent of hot subdwarfs, and may be completely absent at this strength. Further high-precision surveys, both with high-resolution spectropolarimeters and with instruments similar to FORS1 on large telescopes, would be very valuable.
181 - JF Donati , JD Landstreet 2009
Magnetic fields are present in a wide variety of stars throughout the HR diagram and play a role at basically all evolutionary stages, from very-low-mass dwarfs to very massive stars, and from young star-forming molecular clouds and protostellar accretion discs to evolved giants/supergiants and magnetic white dwarfs/neutron stars. These fields range from a few microG (e.g., in molecular clouds) to TeraG and more (e.g., in magnetic neutron stars); in non-degenerate stars in particular, they feature large-scale topologies varying from simple nearly-axisymmetric dipoles to complex non-axsymmetric structures, and from mainly poloidal to mainly toroidal topology. After recalling the main techniques of detecting and modelling stellar magnetic fields, we review the existing properties of magnetic fields reported in cool, hot and young non-degenerate stars and protostars, and discuss our understanding of the origin of these fields and their impact on the birth and life of stars.
265 - R. Fares 2013
Magnetic fields play an important role at all stages of stellar evolution. In Sun-like stars, they are generated in the outer convective layers. Studying the large-scale magnetic fields of these stars enlightens our understanding of the field properties and gives us observational constraints for the field generation models. In this review, I summarise the current observational picture of the large-scale magnetic fields of Sun-like stars, in particular solar-twins and planet-host stars. I discuss the observations of large-scale magnetic cycles, and compare these cycles to the solar cycle.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا