Quest for new states of matter near an ordered phase is a promising route for making modern physics forward. By probing thermal properties of a ferroelectric (FE) crystal Ba1-xSrxAl2O4, we have clarified that low-energy excitation of acoustic phonons is remarkably enhanced with critical behavior at the border of the FE phase. The phonon spectrum is significantly damped toward the FE phase boundary and transforms into glasslike phonon excitation which is reminiscent of a boson peak. This system thus links long-standing issues of amorphous solids and structural instability in crystals to pave the way to controlling lattice fluctuation as a new tuning parameter.
To gain control over magnetic order on ultrafast time scales, a fundamental understanding of the way electron spins interact with the surrounding crystal lattice is required. However, measurement and analysis even of basic collective processes such as spin-phonon equilibration have remained challenging. Here, we directly probe the flow of energy and angular momentum in the model insulating ferrimagnet yttrium iron garnet. Following ultrafast resonant lattice excitation, we observe that magnetic order reduces on distinct time scales of 1 ps and 100 ns. Temperature-dependent measurements, a spin-coupling analysis and simulations show that the two dynamics directly reflect two stages of spin-lattice equilibration. On the 1-ps scale, spins and phonons reach quasi-equilibrium in terms of energy through phonon-induced modulation of the exchange interaction. This mechanism leads to identical demagnetization of the ferrimagnets two spin-sublattices and a novel ferrimagnetic state of increased temperature yet unchanged total magnetization. Finally, on the much slower, 100-ns scale, the excess of spin angular momentum is released to the crystal lattice, resulting in full equilibrium. Our findings are relevant for all insulating ferrimagnets and indicate that spin manipulation by phonons, including the spin Seebeck effect, can be extended to antiferromagnets and into the terahertz frequency range.
Ion diffusion is important in a variety of applications, yet fundamental understanding of the diffusive process in solids is still missing, especially considering the interaction of lattice vibrations (phonons) and the mobile species. In this work, we introduce two formalisms that determine the individual contributions of normal modes of vibration (phonons) to the diffusion of ions through a solid, based on (i) Nudged Elastic Band (NEB) calculations and (ii) molecular dynamics (MD) simulations. The results for a model ion conductor of $rm{Ge}$-substituted $rm{Li_3PO_4}$ ($rm{Li_{3.042}Ge_{0.042}P_{0.958}O_4}$) revealed that more than 87% of the $rm{Li^+}$ ion diffusion in the lattice originated from a subset of less than 10% of the vibrational modes with frequencies between 8 and 20 THz. By deliberately exciting a small targeted subset of these contributing modes (less than 1%) to a higher temperature and still keeping the lattice at low temperature, we observed an increase in diffusivity by several orders of magnitude, consistent with what would be observed if the entire material (i.e., all modes) were excited to the same high temperature. This observation suggests that an entire material need not be heated to elevated temperatures to increase diffusivity, but instead only the modes that contribute to diffusion, or more generally a reaction/transition pathway, need to be excited to elevated temperatures. This new understanding identifies new avenues for increasing diffusivity by engineering the vibrations in a material, and/or increasing diffusivity by external stimuli/excitation of phonons (e.g., via photons or other interactions) without necessarily changing the compound chemistry.
We report phonon renormalization induced by an external electric field E in ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] nanofibers through measuring the E-dependent thermal conductivity. Our experimental results are in excellent agreement with the theoretical ones derived from the lattice dynamics. The renormalization is attributed to the anharmonicity that modifies the phonon spectrum when the atoms are pulled away from their equilibrium positions by the electric field. Our finding provides an efficient way to manipulate the thermal conductivity by tuning external fields in ferroelectric materials.
Local inhomogeneities known as polar nanoregions (PNR) play a key role in governing the dielectric properties of relaxor ferroelectrics - a special class of material that exhibits an enormous electromechanical response and is easily polarized with an external field. Using neutron inelastic scattering methods, we show that the PNR can also significantly affect the structural properties of the relaxor ferroelectric Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 (PZN-4.5%PT). A strong interaction is found between the PNR and the propagation of sound waves, i.e. acoustic phonons, the visibility of which can be enhanced with an external electric field. A comparison between acoustic phonons propagating along different directions reveals a large asymmetry in the lattice dynamics that is induced by the PNR. We suggest that a phase instability induced by this PNR-phonon interaction may contribute to the ultrahigh piezoelectric response of this and related relaxor ferroelectric materials. Our results also naturally explain the emergence of the various observed monoclinic phases in these systems.
Modulating the polarization of a beam of quantum particles is a powerful method to tailor the macroscopic properties of the ensuing energy flux as it directly influences the way in which its quantum constituents interact with other particles, waves or continuum media. Practical polarizers, being well developed for electric and electromagnetic energy, have not been proposed to date for heat fluxes carried by phonons. Here we report on atomistic phonon transport calculations demonstrating that ferroelectric domain walls can operate as phonon polarizers when a heat flux pierces them. Our simulations for representative ferroelectric perovskite PbTiO$_3$ show that the structural inhomogeneity associated to the domain walls strongly suppresses transverse phonons, while longitudinally polarized modes can travel through multiple walls in series largely ignoring their presence.