Do you want to publish a course? Click here

Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation

80   0   0.0 ( 0 )
 Added by Sebastian Maehrlein
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

To gain control over magnetic order on ultrafast time scales, a fundamental understanding of the way electron spins interact with the surrounding crystal lattice is required. However, measurement and analysis even of basic collective processes such as spin-phonon equilibration have remained challenging. Here, we directly probe the flow of energy and angular momentum in the model insulating ferrimagnet yttrium iron garnet. Following ultrafast resonant lattice excitation, we observe that magnetic order reduces on distinct time scales of 1 ps and 100 ns. Temperature-dependent measurements, a spin-coupling analysis and simulations show that the two dynamics directly reflect two stages of spin-lattice equilibration. On the 1-ps scale, spins and phonons reach quasi-equilibrium in terms of energy through phonon-induced modulation of the exchange interaction. This mechanism leads to identical demagnetization of the ferrimagnets two spin-sublattices and a novel ferrimagnetic state of increased temperature yet unchanged total magnetization. Finally, on the much slower, 100-ns scale, the excess of spin angular momentum is released to the crystal lattice, resulting in full equilibrium. Our findings are relevant for all insulating ferrimagnets and indicate that spin manipulation by phonons, including the spin Seebeck effect, can be extended to antiferromagnets and into the terahertz frequency range.



rate research

Read More

146 - Y. Ishii , A. Yamamoto , N. Sato 2021
Quest for new states of matter near an ordered phase is a promising route for making modern physics forward. By probing thermal properties of a ferroelectric (FE) crystal Ba1-xSrxAl2O4, we have clarified that low-energy excitation of acoustic phonons is remarkably enhanced with critical behavior at the border of the FE phase. The phonon spectrum is significantly damped toward the FE phase boundary and transforms into glasslike phonon excitation which is reminiscent of a boson peak. This system thus links long-standing issues of amorphous solids and structural instability in crystals to pave the way to controlling lattice fluctuation as a new tuning parameter.
NiO is a prototypical antiferromagnet with a characteristic resonance frequency in the THz range. From atomistic spin dynamics simulations that take into account the crystallographic structure of NiO, and in particular a magnetic anisotropy respecting its symmetry, we describe antiferromagnetic switching at THz frequency by a spin transfer torque mechanism. Sub-picosecond S-state switching between the six allowed stable spin directions is found for reasonably achievable spin currents, like those generated by laser induced ultrafast demagnetization. A simple procedure for picosecond writing of a six-state memory is described, thus opening the possibility to speed up current logic of electronic devices by several orders of magnitude.
84 - D. Novko , F. Caruso , C. Draxl 2019
The zone-center $E_{2g}$ modes play a crucial role in MgB$_2$, controlling the scattering mechanisms in the normal state as well the superconducting pairing. Here, we demonstrate via first-principles quantum-field theory calculations that, due to the anisotropic electron-phonon interaction, a $hot$-$phonon$ regime where the $E_{2g}$ phonons can achieve significantly larger effective populations than other modes, is triggered in MgB$_2$ by the interaction with an ultra-short laser pulse. Spectral signatures of this scenario in ultrafast pump-probe Raman spectroscopy are discussed in detail, revealing also a fundamental role of nonadiabatic processes in the optical features of the $E_{2g}$ mode.
We study the heat-induced magnetization dynamics in a toy model of a ferrimagnetic alloy, which includes localized spins antiferromagnetically coupled to an itinerant carrier system with a Stoner gap. We determine the one-particle spin-density matrix including exchange scattering between localized and itinerant bands as well as scattering with phonons. While a transient ferromagnetic-like state can always be achieved by a sufficiently strong excitation, this transient ferromagnetic-like state only leads to magnetization switching for model parameters that also yield a compensation point in the equilibrium M(T) curve.
215 - J. Qi , Y. Xu , N. Tolk 2007
We use femtosecond optical pulses to induce, control and monitor magnetization precession in ferromagnetic Ga0.965Mn0.035As. At temperatures below ~40 K we observe coherent oscillations of the local Mn spins, triggered by an ultrafast photoinduced reorientation of the in-plane easy axis. The amplitude saturation of the oscillations above a certain pump intensity indicates that the easy axis remains unchanged above ~TC/2. We find that the observed magnetization precession damping (Gilbert damping) is strongly dependent on pump laser intensity, but largely independent on ambient temperature. We provide a physical interpretation of the observed light-induced collective Mn-spin relaxation and precession.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا