Do you want to publish a course? Click here

Universal rigidity on the line, point order

138   0   0.0 ( 0 )
 Added by Robert Connelly
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We show that universal rigidity of a generic bar and joint framework (G,p) in the line depends on more than the ordering of the vertices. In particular, we construct examples of one-dimensional generic frameworks with the same graph and ordering of the vertices, such that one is universally rigid and one is not. This answers, in the negative, a question of Jordan and Nguyen.



rate research

Read More

Let $Gamma$ be a compact tropical curve (or metric graph) of genus $g$. Using the theory of tropical theta functions, Mikhalkin and Zharkov proved that there is a canonical effective representative (called a break divisor) for each linear equivalence class of divisors of degree $g$ on $Gamma$. We present a new combinatorial proof of the fact that there is a unique break divisor in each equivalence class, establishing in the process an integral version of this result which is of independent interest. As an application, we provide a geometric proof of (a dual version of) Kirchhoffs celebrated Matrix-Tree Theorem. Indeed, we show that each weighted graph model $G$ for $Gamma$ gives rise to a canonical polyhedral decomposition of the $g$-dimensional real torus ${rm Pic}^g(Gamma)$ into parallelotopes $C_T$, one for each spanning tree $T$ of $G$, and the dual Kirchhoff theorem becomes the statement that the volume of ${rm Pic}^g(Gamma)$ is the sum of the volumes of the cells in the decomposition.
The rook monoid $R_n$ is the finite monoid whose elements are the 0-1 matrices with at most one nonzero entry in each row and column. The group of invertible elements of $R_n$ is isomorphic to the symmetric group $S_n$. The natural extension to $R_n$ of the Bruhat-Chevalley ordering on the symmetric group is defined in cite{Renner86}. In this paper, we find an efficient, combinatorial description of the Bruhat-Chevalley ordering on $R_n$. We also give a useful, combinatorial formula for the length function on $R_n$.
131 - Jaeho Shin 2019
There is a trinity relationship between hyperplane arrangements, matroids and convex polytopes. We expand it as resolving the complexity issue expected by Mnevs universality theorem and conduct combinatorializing so the theory over fields becomes realization of our combinatorial theory. A main theorem is that for n less than or equal to 9 a specific and general enough kind of matroid tilings in the hypersimplex Delta(3,n) extend to matroid subdivisions of Delta(3,n) with the bound n=9 sharp. As a straightforward application to realizable cases, we solve an open problem in algebraic geometry proposed in 2008.
A one-to-one correspondence between the infinitesimal motions of bar-joint frameworks in $mathbb{R}^d$ and those in $mathbb{S}^d$ is a classical observation by Pogorelov, and further connections among different rigidity models in various different spaces have been extensively studied. In this paper, we shall extend this line of research to include the infinitesimal rigidity of frameworks consisting of points and hyperplanes. This enables us to understand correspondences between point-hyperplane rigidity, classical bar-joint rigidity, and scene analysis. Among other results, we derive a combinatorial characterization of graphs that can be realized as infinitesimally rigid frameworks in the plane with a given set of points collinear. This extends a result by Jackson and Jord{a}n, which deals with the case when three points are collinear.
We show that a generic framework $(G,p)$ on the cylinder is globally rigid if and only if $G$ is a complete graph on at most four vertices or $G$ is both redundantly rigid and $2$-connected. To prove the theorem we also derive a new recursive construction of circuits in the simple $(2,2)$-sparse matroid, and a characterisation of rigidity for generic frameworks on the cylinder when a single designated vertex is allowed to move off the cylinder.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا