Do you want to publish a course? Click here

Point-hyperplane frameworks, slider joints, and rigidity preserving transformations

71   0   0.0 ( 0 )
 Added by Anthony Nixon
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

A one-to-one correspondence between the infinitesimal motions of bar-joint frameworks in $mathbb{R}^d$ and those in $mathbb{S}^d$ is a classical observation by Pogorelov, and further connections among different rigidity models in various different spaces have been extensively studied. In this paper, we shall extend this line of research to include the infinitesimal rigidity of frameworks consisting of points and hyperplanes. This enables us to understand correspondences between point-hyperplane rigidity, classical bar-joint rigidity, and scene analysis. Among other results, we derive a combinatorial characterization of graphs that can be realized as infinitesimally rigid frameworks in the plane with a given set of points collinear. This extends a result by Jackson and Jord{a}n, which deals with the case when three points are collinear.



rate research

Read More

We consider the problem of characterising the generic rigidity of bar-joint frameworks in $mathbb{R}^d$ in which each vertex is constrained to lie in a given affine subspace. The special case when $d=2$ was previously solved by I. Streinu and L. Theran in 2010. We will extend their characterisation to the case when $dgeq 3$ and each vertex is constrained to lie in an affine subspace of dimension $t$, when $t=1,2$ and also when $tgeq 3$ and $dgeq t(t-1)$. We then point out that results on body-bar frameworks obtained by N. Katoh and S. Tanigawa in 2013 can be used to characterise when a graph has a rigid realisation as a $d$-dimensional body-bar framework with a given set of linear constraints.
A linearly constrained framework in $mathbb{R}^d$ is a point configuration together with a system of constraints which fixes the distances between some pairs of points and additionally restricts some of the points to lie in given affine subspaces. It is globally rigid if the configuration is uniquely defined by the constraint system, and is rigid if it is uniquely defined within some small open neighbourhood. Streinu and Theran characterised generic rigidity of linearly constrained frameworks in $mathbb{R}^2$ in 2010. We obtain an analagous characterisation for generic global rigidity in $mathbb{R}^2$. More precisely we show that a generic linearly constrained framework in $mathbb{R}^2$ is globally rigid if and only if it is redundantly rigid and `balanced. For generic frameworks which are not balanced, we determine the precise number of solutions to the constraint system whenever the underlying rigidity matroid of the given framework is connected. We also obtain a stress matrix sufficient condition and a Hendrickson type necessary condition for a generic linearly constrained framework to be globally rigid in $mathbb{R}^d$.
We show that a generic framework $(G,p)$ on the cylinder is globally rigid if and only if $G$ is a complete graph on at most four vertices or $G$ is both redundantly rigid and $2$-connected. To prove the theorem we also derive a new recursive construction of circuits in the simple $(2,2)$-sparse matroid, and a characterisation of rigidity for generic frameworks on the cylinder when a single designated vertex is allowed to move off the cylinder.
We consider the problem of characterising the generic rigidity of bar-joint frameworks in $mathbb{R}^d$ in which each vertex is constrained to lie in a given affine subspace. The special case when $d=2$ was previously solved by I. Streinu and L. Theran in 2010 and the case when each vertex is constrained to lie in an affine subspace of dimension $t$, and $dgeq t(t-1)$ was solved by Cruickshank, Guler and the first two authors in 2019. We extend the latter result by showing that the given characterisation holds whenever $dgeq 2t$.
We define and study slider-pinning rigidity, giving a complete combinatorial characterization. This is done via direction-slider networks, which are a generalization of Whiteleys direction networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا