No Arabic abstract
Fast channel estimation in millimeter-wave (mmWave) systems is a fundamental enabler of high-gain beamforming, which boosts coverage and capacity. The channel estimation stage typically involves an initial beam training process where a subset of the possible beam directions at the transmitter and receiver is scanned along a predefined codebook. Unfortunately, the high number of transmit and receive antennas deployed in mmWave systems increase the complexity of the beam selection and channel estimation tasks. In this work, we tackle the channel estimation problem in analog systems from a different perspective than used by previous works. In particular, we propose to move the channel estimation problem from the angular domain into the transformed spatial domain, in which estimating the angles of arrivals and departures corresponds to estimating the angular frequencies of paths constituting the mmWave channel. The proposed approach, referred to as transformed spatial domain channel estimation (TSDCE) algorithm, exhibits robustness to additive white Gaussian noise by combining low-rank approximations and sample autocorrelation functions for each path in the transformed spatial domain. Numerical results evaluate the mean square error of the channel estimation and the direction of arrival estimation capability. TSDCE significantly reduces the first, while exhibiting a remarkably low computational complexity compared with well-known benchmarking schemes.
The tremendous bandwidth available in the millimeter wave (mmW) frequencies between 30 and 300 GHz have made these bands an attractive candidate for next-generation cellular systems. However, reliable communication at these frequencies depends extensively on beamforming with very high-dimensional antenna arrays. Estimating the channel sufficiently accurately to perform beamforming can thus be challenging both due to low coherence time and large number of antennas. Also, the measurements used for channel estimation may need to be made with analog beamforming where the receiver can look in only direction at a time. This work presents a novel method for estimation of the receive-side spatial covariance matrix of a channel from a sequence of power measurements made at different angular directions. The method reduces the spatial covariance estimation to a matrix completion optimization problem. To reduce the number of measurements, the optimization can incorporate the low-rank constraints in the channels that are typical in the mmW setting. The optimization is convex and fast, iterative methods are presented to solving the problem. Simulations are presented for both single and multi-path channels using channel models derived from real measurements in New York City at 28 GHz.
Beamforming structures with fixed beam codebooks provide economical solutions for millimeter wave (mmWave) communications due to the low hardware cost. However, the training overhead to search for the optimal beamforming configuration is proportional to the codebook size. To improve the efficiency of beam tracking, we propose a beam tracking scheme based on the channel fingerprint database, which comprises mappings between statistical beamforming gains and user locations. The scheme tracks user movement by utilizing the trained beam configurations and estimating the gains of beam configurations that are not trained. Simulations show that the proposed scheme achieves significant beamforming performance gains over existing beam tracking schemes.
The densely packed antennas of millimeter-Wave (mmWave) MIMO systems are often blocked by the rain, snow, dust and even by fingers, which will change the channels characteristics and degrades the systems performance. In order to solve this problem, we propose a cross-entropy inspired antenna array diagnosis detection (CE-AAD) technique by exploiting the correlations of adjacent antennas, when blockages occur at the transmitter. Then, we extend the proposed CE-AAD algorithm to the case, where blockages occur at transmitter and receiver simultaneously. Our simulation results show that the proposed CE-AAD algorithm outperforms its traditional counterparts.
The Terahertz band is envisioned to meet the demanding 100 Gbps data rates for 6G wireless communications. Aiming at combating the distance limitation problem with low hardware-cost, ultra-massive MIMO with hybrid beamforming is promising. However, relationships among wavelength, array size and antenna spacing give rise to the inaccuracy of planar-wave channel model (PWM), while an enlarged channel matrix dimension leads to excessive parameters of applying spherical-wave channel model (SWM). Moreover, due to the adoption of hybrid beamforming, channel estimation (CE) needs to recover high-dimensional channels from severely compressed channel observation. In this paper, a hybrid spherical- and planar-wave channel model (HSPM) is investigated and proved to be accurate and efficient by adopting PWM within subarray and SWM among subarray. Furthermore, a two-phase HSPM CE mechanism is developed. A deep convolutional-neural-network (DCNN) is designed in the first phase for parameter estimation of reference subarrays, while geometric relationships of the remaining channel parameters between reference subarrays are leveraged to complete CE in the second phase. Extensive numerical results demonstrate the HSPM is accurate at various communication distances, array sizes and carrier frequencies.The DCNN converges fast and achieves high accuracy with 5.2 dB improved normalized-mean-square-error compared to literature methods, and owns substantially low complexity.
The sparsity of multipaths in wideband channel has motivated the use of compressed sensing for channel estimation. In this letter, we propose an entirely different approach to sparse channel estimation. We exploit the fact that $L$ taps of channel impulse response in time domain constitute a non-orthogonal superposition of $L$ geometric sequences in frequency domain. This converts the channel estimation problem into the extraction of the parameters of geometric sequences. Notably, the proposed scheme achieves the error-free estimation of the whole bandwidth with a few pilot symbols if the excess delay is bounded to a certain value.