No Arabic abstract
Ongoing standardization in Industry 4.0 supports tool vendor neutral representations of Piping and Instrumentation diagrams as well as 3D pipe routing. However, a complete digital plant model requires combining these two representations. 3D pipe routing information is essential for building any accurate first-principles process simulation model. Piping and instrumentation diagrams are the primary source for control loops. In order to automatically integrate these information sources to a unified digital plant model, it is necessary to develop algorithms for identifying corresponding elements such as tanks and pumps from piping and instrumentation diagrams and 3D CAD models. One approach is to raise these two information sources to a common level of abstraction and to match them at this level of abstraction. Graph matching is a potential technique for this purpose. This article focuses on automatic generation of the graphs as a prerequisite to graph matching. Algorithms for this purpose are proposed and validated with a case study. The paper concludes with a discussion of further research needed to reprocess the generated graphs in order to enable effective matching.
Digital watermarking has been widely used to protect the copyright and integrity of multimedia data. Previous studies mainly focus on designing watermarking techniques that are robust to attacks of destroying the embedded watermarks. However, the emerging deep learning based image generation technology raises new open issues that whether it is possible to generate fake watermarked images for circumvention. In this paper, we make the first attempt to develop digital image watermark fakers by using generative adversarial learning. Suppose that a set of paired images of original and watermarked images generated by the targeted watermarker are available, we use them to train a watermark faker with U-Net as the backbone, whose input is an original image, and after a domain-specific preprocessing, it outputs a fake watermarked image. Our experiments show that the proposed watermark faker can effectively crack digital image watermarkers in both spatial and frequency domains, suggesting the risk of such forgery attacks.
Digital Twin (DT) is a promising technology for the new immersive digital life with a variety of applications in areas such as Industry 4.0, aviation, and healthcare. Proliferation of this technology requires higher data rates, reliability, resilience, and lower latency beyond what is currently offered by 5G. Thus, DT can become a major driver for 6G research and development. Alternatively, 6G network development can benefit from Digital Twin technology and its powerful features such as modularity and remote intelligence. Using DT, a 6G network (or some of its components) will have the opportunity to use Artificial Intelligence more proactively in order to enhance its resilience. DTs application in telecommunications is still in its infancy. In this article we highlight some of the most promising research and development directions for this technology.
Digital Engineering, the digital transformation of engineering to leverage digital technologies, is coming globally. This paper explores digital systems engineering, which aims at developing theory, methods, models, and tools to support the emerging digital engineering. A critical task is to digitalize engineering artifacts, thus enabling information sharing across platform, across life cycle, and across domains. We identify significant challenges and enabling digital technologies; analyze the transition from traditional engineering to digital engineering; define core concepts, including digitalization, unique identification, digitalized artifacts, digital augmentation, and others; present a big picture of digital systems engineering in four levels: vision, strategy, action, and foundation; briefly discuss each of main areas of research issues. Digitalization enables fast infusing and leveraging novel digital technologies; unique identification enables information traceability and accountability in engineering lifecycle; provenance enables tracing dependency relations among engineering artifacts; supporting model reproducibility and replicability; helping with trustworthiness evaluation of digital engineering artifacts.
Automated methods for breast cancer detection have focused on 2D mammography and have largely ignored 3D digital breast tomosynthesis (DBT), which is frequently used in clinical practice. The two key challenges in developing automated methods for DBT classification are handling the variable number of slices and retaining slice-to-slice changes. We propose a novel deep 2D convolutional neural network (CNN) architecture for DBT classification that simultaneously overcomes both challenges. Our approach operates on the full volume, regardless of the number of slices, and allows the use of pre-trained 2D CNNs for feature extraction, which is important given the limited amount of annotated training data. In an extensive evaluation on a real-world clinical dataset, our approach achieves 0.854 auROC, which is 28.80% higher than approaches based on 3D CNNs. We also find that these improvements are stable across a range of model configurations.
Industrial processes rely on sensory data for decision-making processes, risk assessment, and performance evaluation. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the dissemination of trustworthy data. For the physical data to be trustworthy, it needs to be cross-validated through multiple sensor sources with overlapping fields of view. Cross-validated data can then be stored on the blockchain, to maintain its integrity and trustworthiness. Once trustworthy data is recorded on the blockchain, product lifecycle events can be fed into data-driven systems for process monitoring, diagnostics, and optimized control. In this regard, Digital Twins (DTs) can be leveraged to draw intelligent conclusions from data by identifying the faults and recommending precautionary measures ahead of critical events. Empowering DTs with blockchain in industrial use-cases targets key challenges of disparate data repositories, untrustworthy data dissemination, and the need for predictive maintenance. In this survey, while highlighting the key benefits of using blockchain-based DTs, we present a comprehensive review of the state-of-the-art research results for blockchain-based DTs. Based on the current research trends, we discuss a trustworthy blockchain-based DTs framework. We highlight the role of Artificial Intelligence (AI) in blockchain-based DTs. Furthermore, we discuss current and future research and deployment challenges of blockchain-supported DTs that require further investigation.