Do you want to publish a course? Click here

On simple $15$-dimensional Lie algebras in characteristic $2$

142   0   0.0 ( 0 )
 Added by Pasha Zusmanovich
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by the recent progress towards classification of simple finite-dimensional Lie algebras over an algebraically closed field of characteristic $2$, we investigate such $15$-dimensional algebras.



rate research

Read More

In this paper we consider gradings by a finite abelian group $G$ on the Lie algebra $mathfrak{sl}_n(F)$ over an algebraically closed field $F$ of characteristic different from 2 and not dividing $n$.
388 - Tara Brough , Bettina Eick 2015
We investigate the graded Lie algebras of Cartan type $W$, $S$ and $H$ in characteristic 2 and determine their simple constituents and some exceptional isomorphisms between them. We also consider the graded Lie algebras of Cartan type $K$ in characteristic 2 and conjecture that their simple constituents are isomorphic to Lie algebras of type $H$.
63 - Philippe Meyer 2020
We give a process to construct non-split, three-dimensional simple Lie algebras from involutions of sl(2,k), where k is a field of characteristic not two. Up to equivalence, non-split three-dimensional simple Lie algebras obtained in this way are parametrised by a subgroup of the Brauer group of k and are characterised by the fact that their Killing form represents -2. Over local and global fields we re-express this condition in terms of Hilbert and Legendre Symbols and give examples of three-dimensional simple Lie algebras which can and cannot be obtained by this construction over the field of rationals.
We classify, up to isomorphism, all gradings by an arbitrary abelian group on simple finitary Lie algebras of linear transformations (special linear, orthogonal and symplectic) on infinite-dimensional vector spaces over an algebraically closed field of characteristic different from 2.
We overview the classifications of simple finite-dimensional modular Lie algebras. In characteristic 2, their list is wider than that in other characteristics; e.g., it contains desuperizations of modular analogs of complex simple vectorial Lie superalgebras. We consider odd parameters of deformations. For all 15 Weisfeiler gradings of the 5 exceptional families, and one Weisfeiler grading for each of 2 serial simple complex Lie superalgebras (with 2 exceptional subseries), we describe their characteristic-2 analogs - new simple Lie algebras. Descriptions of several of these analogs, and of their desuperizations, are far from obvious. One of the exceptional simple vectorial Lie algebras is a previously unknown deform (the result of a deformation) of the characteristic-2 version of the Lie algebra of divergence-free vector fields; this is a new simple Lie algebra with no analogs in characteristics distinct from 2. In characteristic 2, every simple Lie superalgebra can be obtained from a simple Lie algebra by one of the two methods described in arXiv:1407.1695. Most of the simple Lie superalgebras thus obtained from simple Lie algebras we describe here are new.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا