In this paper we consider gradings by a finite abelian group $G$ on the Lie algebra $mathfrak{sl}_n(F)$ over an algebraically closed field $F$ of characteristic different from 2 and not dividing $n$.
We classify, up to isomorphism, all gradings by an arbitrary abelian group on simple finitary Lie algebras of linear transformations (special linear, orthogonal and symplectic) on infinite-dimensional vector spaces over an algebraically closed field of characteristic different from 2.
For a given abelian group G, we classify the isomorphism classes of G-gradings on the simple restricted Lie algebras of types W(m;1) and S(m;1) (m>=2), in terms of numerical and group-theoretical invariants. Our main tool is automorphism group schemes, which we determine for the simple restricted Lie algebras of types S(m;1) and H(m;1). The ground field is assumed to be algebraically closed of characteristic p>3.
We classify, up to isomorphism, gradings by abelian groups on nilpotent filiform Lie algebras of nonzero rank. In case of rank 0, we describe conditions to obtain non trivial $Z_k$-gradings.
We complete the classification of positive rank gradings on Lie algebras of simple algebraic groups over an algebraically closed field k whose characteristic is zero or not too small, and we determine the little Weyl groups in each case. We also classify the stable gradings and prove Popovs conjecture on the existence of a Kostant section.
For any abelian group $G$, we classify up to isomorphism all $G$-gradings on the classical central simple Lie algebras, except those of type $D_4$, over the field of real numbers (or any real closed field).
Yuri Bahturin
,Mikhail Kochetov
,Susan Montgomery
.
(2007)
.
"Group gradings on simple Lie algebras of type A in positive characteristic"
.
Mikhail Kotchetov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا