No Arabic abstract
We demonstrate a method to obtain homogeneous atom-cavity coupling by selecting and keeping $^{87}$Rb atoms that are near maximally coupled to the cavitys standing-wave mode. We select atoms by imposing an AC Stark shift on the ground state hyperfine microwave transition frequency with light injected into the cavity. We then induce a spin flip with microwaves that are resonant for atoms that are near maximally coupled to the cavity mode of interest, after which, we use radiation pressure forces to remove from the cavity all the atoms in the initial spin state. Achieving greater homogeneity in the atom-cavity coupling will potentially enhance entanglement generation, intracavity driving of atomic transitions, cavity-optomechanics, and quantum simulations. This approach can easily be extended to other atomic species with microwave or optical transitions.
We experimentally demonstrate a ring geometry all-fiber cavity system for cavity quantum electrodynamics with an ensemble of cold atoms. The fiber cavity contains a nanofiber section which mediates atom-light interactions through an evanescent field. We observe well-resolved, vacuum Rabi splitting of the cavity transmission spectrum in the weak driving limit due to a collective enhancement of the coupling rate by the ensemble of atoms within the evanescent field, and we present a simple theoretical model to describe this. In addition, we demonstrate a method to control and stabilize the resonant frequency of the cavity by utilizing the thermal properties of the nanofiber.
We theoretically explore atomic Bose-Einstein condensates (BECs) subject to position-dependent spin-orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal atomic ground (or metastable) states in an environment where the detuning from resonance depends on position. The resulting spin-orbit coupled BEC phase-separates into domains, each of which contain density modulations - stripes - aligned either along the x or y direction. In each domain, the stripe orientation is determined by the sign of the local detuning. When these stripes have mismatched spatial periods along domain boundaries, non-trivial topological spin textures form at the interface, including skyrmions-like spin vortices and anti-vortices. In contrast to vortices present in conventional rotating BECs, these spin-vortices are stable topological defects that are not present in the corresponding homogenous stripe-phase spin-orbit coupled BECs.
Efficient coupling of light to single atomic systems has gained considerable attention over the past decades. This development is driven by the continuous growth of quantum technologies. The efficient coupling of light and matter is an enabling technology for quantum information processing and quantum communication. And indeed, in recent years much progress has been made in this direction. But applications aside, the interaction of photons and atoms is a fundamental physics problem. There are various possibilities for making this interaction more efficient, among them the apparently natural attempt of mode-matching the light field to the free-space emission pattern of the atomic system of interest. Here we will describe the necessary steps of implementing this mode-matching with the ultimate aim of reaching unit coupling efficiency. We describe the use of deep parabolic mirrors as the central optical element of a free-space coupling scheme, covering the preparation of suitable modes of the field incident onto these mirrors as well as the location of an atom at the mirrors focus. Furthermore, we establish a robust method for determining the efficiency of the photon-atom coupling.
Neutral atom arrays are promising for large-scale quantum computing especially because it is possible to prepare large-scale qubit arrays. An unsolved issue is how to selectively excite one qubit deep in a 3D atomic array to Rydberg states. In this work, we show two methods for this purpose. The first method relies on a well-known result: in a dipole transition between two quantum states driven by two off-resonant fields of equal strength but opposite detunings $pmDelta$, the transition is characterized by two counter-rotating Rabi frequencies $Omega e^{pm iDelta t}$~[or $pmOmega e^{pm iDelta t}$ if the two fields have a $pi$-phase difference]. This pair of detuned fields lead to a time-dependent Rabi frequency $2Omega cos(Delta t)$~[or $2iOmega sin(Delta t)$], so that a full transition between the two levels is recovered. We show that when the two detuned fields are sent in different directions, one atom in a 3D optical lattice can be selectively addressed for Rydberg excitation, and when its state is restored, the state of any nontarget atoms irradiated in the light path is also restored. Moreover, we find that the Rydberg excitation by this method can significantly suppress the fundamental blockade error of a Rydberg gate, paving the way for a high-fidelity entangling gate with commonly used quasi-rectangular pulse that is easily obtained by pulse pickers. Along the way, we find a second method for single-site Rydberg addressing in 3D, where a selected target atom can be excited to Rydberg state while preserving the state of any nontarget atom due to a spin echo sequence. The capability to selectively address a target atom in 3D atomic arrays for Rydberg excitation makes it possible to design large-scale neutral-atom information processor based on Rydberg blockade.
The entanglement characteristics including the so-called sudden death effect between two identical two-level atoms trapped in two separate cavities connected by an optical fiber are studied. The results show that the time evolution of entanglement is sensitive not only to the degree of entanglement of the initial state but also to the ratio between cavity-fiber coupling () and atom-cavity coupling (). This means that the entanglement dynamics can be controlled by choosing specific v and g.