Do you want to publish a course? Click here

Photon-Atom Coupling with Parabolic Mirrors

305   0   0.0 ( 0 )
 Added by Markus Sondermann
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Efficient coupling of light to single atomic systems has gained considerable attention over the past decades. This development is driven by the continuous growth of quantum technologies. The efficient coupling of light and matter is an enabling technology for quantum information processing and quantum communication. And indeed, in recent years much progress has been made in this direction. But applications aside, the interaction of photons and atoms is a fundamental physics problem. There are various possibilities for making this interaction more efficient, among them the apparently natural attempt of mode-matching the light field to the free-space emission pattern of the atomic system of interest. Here we will describe the necessary steps of implementing this mode-matching with the ultimate aim of reaching unit coupling efficiency. We describe the use of deep parabolic mirrors as the central optical element of a free-space coupling scheme, covering the preparation of suitable modes of the field incident onto these mirrors as well as the location of an atom at the mirrors focus. Furthermore, we establish a robust method for determining the efficiency of the photon-atom coupling.



rate research

Read More

Deterministic quantum interactions between single photons and single quantum emitters are a vital building block towards the distribution of quantum information between remote systems. Deterministic photon-atom state transfer has been demonstrated by using protocols that include active feedback or synchronized control pulses. Here we demonstrate a completely passive swap gate between the states of a single photon and a single atom. The underlying mechanism is single-photon Raman interaction (SPRINT) - an interference-based effect in which a photonic qubit deterministically controls the state of a material qubit encoded in the two ground states of a {Lambda} system, and vice versa. Using a nanofiber-coupled microsphere resonator coupled to single Rb atoms we swap a photonic qubit into the atom and back, demonstrating nonclassical fidelities in both directions. Requiring no control fields or feedback protocol, the gate takes place automatically at the timescale of the atoms cavity- enhanced spontaneous emission time. Applicable to any waveguide-coupled {Lambda} system, this scheme provides a versatile building block for the modular scaling up of quantum information processing systems.
Single atoms form a model system for understanding the limits of single photon detection. Here, we develop a non-Markov theory of single-photon absorption by a two-level atom to place limits on the absorption (transduction) time. We show the existence of a finite rise time in the probability of excitation of the atom during the absorption event which is infinitely fast in previous Markov theories. This rise time is governed by the bandwidth of the atom-field interaction spectrum and leads to a fundamental jitter in time-stamping the absorption event. Our theoretical framework captures both the weak and strong atom-field coupling regimes and sheds light on the spectral matching between the interaction bandwidth and single photon Fock state pulse spectrum. Our work opens questions whether such jitter in the absorption event can be observed in a multi-mode realistic single photon detector. Finally, we also shed light on the fundamental differences between linear and nonlinear detector outputs for single photon Fock state vs. coherent state pulses.
Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron uncertainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on $^{39}$K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions.
Quantum effects, prevalent in the microscopic scale, generally elusive in macroscopic systems due to dissipation and decoherence. Quantum phenomena in large systems emerge only when particles are strongly correlated as in superconductors and superfluids. Cooperative interaction of correlated atoms with electromagnetic fields leads to superradiance, the enhanced quantum radiation phenomenon, exhibiting novel physics such as quantum Dicke phase and ultranarrow linewidth for optical clocks. Recent researches to imprint atomic correlation directly demonstrated controllable collective atom-field interactions. Here, we report cavity-mediated coherent single-atom superradiance. Single atoms with predefined correlation traverse a high-Q cavity one by one, emitting photons cooperatively with the atoms already gone through the cavity. Such collective behavior of time-separated atoms is mediated by the long-lived cavity field. As a result, a coherent field is generated in the steady state, whose intensity varies as the square of the number of traversing atoms during the cavity decay time, exhibiting more than ten-fold enhancement from noncollective cases. The correlation among single atoms is prepared with the aligned atomic phase achieved by nanometer-precision position control of atoms with a nanohole-array aperture. The present work deepens our understanding of the collective matter-light interaction and provides an advanced platform for phase-controlled atom-field interactions.
Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the crossover from propagating fields $E(x) propto e^{pm ik_x x}$ outside the bandgap to localized fields $E(x) propto e^{-kappa_x |x|}$ within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition for the first time by shifting the band edge frequency of the PCW relative to the $rm D_1$ line of atomic cesium for $bar{N}=3.0pm 0.5$ atoms trapped along the PCW. Our results are the initial demonstration of this new paradigm for coherent atom-atom interactions with low dissipation into the guided mode.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا