No Arabic abstract
We propose NeRF-VAE, a 3D scene generative model that incorporates geometric structure via NeRF and differentiable volume rendering. In contrast to NeRF, our model takes into account shared structure across scenes, and is able to infer the structure of a novel scene -- without the need to re-train -- using amortized inference. NeRF-VAEs explicit 3D rendering process further contrasts previous generative models with convolution-based rendering which lacks geometric structure. Our model is a VAE that learns a distribution over radiance fields by conditioning them on a latent scene representation. We show that, once trained, NeRF-VAE is able to infer and render geometrically-consistent scenes from previously unseen 3D environments using very few input images. We further demonstrate that NeRF-VAE generalizes well to out-of-distribution cameras, while convolutional models do not. Finally, we introduce and study an attention-based conditioning mechanism of NeRF-VAEs decoder, which improves model performance.
Camera localization is a fundamental and key component of autonomous driving vehicles and mobile robots to localize themselves globally for further environment perception, path planning and motion control. Recently end-to-end approaches based on convolutional neural network have been much studied to achieve or even exceed 3D-geometry based traditional methods. In this work, we propose a compact network for absolute camera pose regression. Inspired from those traditional methods, a 3D scene geometry-aware constraint is also introduced by exploiting all available information including motion, depth and image contents. We add this constraint as a regularization term to our proposed network by defining a pixel-level photometric loss and an image-level structural similarity loss. To benchmark our method, different challenging scenes including indoor and outdoor environment are tested with our proposed approach and state-of-the-arts. And the experimental results demonstrate significant performance improvement of our method on both prediction accuracy and convergence efficiency.
We revisit human motion synthesis, a task useful in various real world applications, in this paper. Whereas a number of methods have been developed previously for this task, they are often limited in two aspects: focusing on the poses while leaving the location movement behind, and ignoring the impact of the environment on the human motion. In this paper, we propose a new framework, with the interaction between the scene and the human motion taken into account. Considering the uncertainty of human motion, we formulate this task as a generative task, whose objective is to generate plausible human motion conditioned on both the scene and the human initial position. This framework factorizes the distribution of human motions into a distribution of movement trajectories conditioned on scenes and that of body pose dynamics conditioned on both scenes and trajectories. We further derive a GAN based learning approach, with discriminators to enforce the compatibility between the human motion and the contextual scene as well as the 3D to 2D projection constraints. We assess the effectiveness of the proposed method on two challenging datasets, which cover both synthetic and real world environments.
Multivariate time series with missing values are common in areas such as healthcare and finance, and have grown in number and complexity over the years. This raises the question whether deep learning methodologies can outperform classical data imputation methods in this domain. However, naive applications of deep learning fall short in giving reliable confidence estimates and lack interpretability. We propose a new deep sequential latent variable model for dimensionality reduction and data imputation. Our modeling assumption is simple and interpretable: the high dimensional time series has a lower-dimensional representation which evolves smoothly in time according to a Gaussian process. The non-linear dimensionality reduction in the presence of missing data is achieved using a VAE approach with a novel structured variational approximation. We demonstrate that our approach outperforms several classical and deep learning-based data imputation methods on high-dimensional data from the domains of computer vision and healthcare, while additionally improving the smoothness of the imputations and providing interpretable uncertainty estimates.
Unsupervised learning with generative models has the potential of discovering rich representations of 3D scenes. While geometric deep learning has explored 3D-structure-aware representations of scene geometry, these models typically require explicit 3D supervision. Emerging neural scene representations can be trained only with posed 2D images, but existing methods ignore the three-dimensional structure of scenes. We propose Scene Representation Networks (SRNs), a continuous, 3D-structure-aware scene representation that encodes both geometry and appearance. SRNs represent scenes as continuous functions that map world coordinates to a feature representation of local scene properties. By formulating the image formation as a differentiable ray-marching algorithm, SRNs can be trained end-to-end from only 2D images and their camera poses, without access to depth or shape. This formulation naturally generalizes across scenes, learning powerful geometry and appearance priors in the process. We demonstrate the potential of SRNs by evaluating them for novel view synthesis, few-shot reconstruction, joint shape and appearance interpolation, and unsupervised discovery of a non-rigid face model.
Learning how to model complex scenes in a modular way with recombinable components is a pre-requisite for higher-order reasoning and acting in the physical world. However, current generative models lack the ability to capture the inherently compositional and layered nature of visual scenes. While recent work has made progress towards unsupervised learning of object-based scene representations, most models still maintain a global representation space (i.e., objects are not explicitly separated), and cannot generate scenes with novel object arrangement and depth ordering. Here, we present an alternative approach which uses an inductive bias encouraging modularity by training an ensemble of generative models (experts). During training, experts compete for explaining parts of a scene, and thus specialise on different object classes, with objects being identified as parts that re-occur across multiple scenes. Our model allows for controllable sampling of individual objects and recombination of experts in physically plausible ways. In contrast to other methods, depth layering and occlusion are handled correctly, moving this approach closer to a causal generative scene model. Experiments on simple toy data qualitatively demonstrate the conceptual advantages of the proposed approach.