No Arabic abstract
Poetry generation has long been a challenge for artificial intelligence. In the scope of Japanese poetry generation, many researchers have paid attention to Haiku generation, but few have focused on Waka generation. To further explore the creative potential of natural language generation systems in Japanese poetry creation, we propose a novel Waka generation model, WakaVT, which automatically produces Waka poems given user-specified keywords. Firstly, an additive mask-based approach is presented to satisfy the form constraint. Secondly, the structures of Transformer and variational autoencoder are integrated to enhance the quality of generated content. Specifically, to obtain novelty and diversity, WakaVT employs a sequence of latent variables, which effectively captures word-level variability in Waka data. To improve linguistic quality in terms of fluency, coherence, and meaningfulness, we further propose the fused multilevel self-attention mechanism, which properly models the hierarchical linguistic structure of Waka. To the best of our knowledge, we are the first to investigate Waka generation with models based on Transformer and/or variational autoencoder. Both objective and subjective evaluation results demonstrate that our model outperforms baselines significantly.
We investigate large-scale latent variable models (LVMs) for neural story generation -- an under-explored application for open-domain long text -- with objectives in two threads: generation effectiveness and controllability. LVMs, especially the variational autoencoder (VAE), have achieved both effective and controllable generation through exploiting flexible distributional latent representations. Recently, Transformers and its variants have achieved remarkable effectiveness without explicit latent representation learning, thus lack satisfying controllability in generation. In this paper, we advocate to revive latent variable modeling, essentially the power of representation learning, in the era of Transformers to enhance controllability without hurting state-of-the-art generation effectiveness. Specifically, we integrate latent representation vectors with a Transformer-based pre-trained architecture to build conditional variational autoencoder (CVAE). Model components such as encoder, decoder and the variational posterior are all built on top of pre-trained language models -- GPT2 specifically in this paper. Experiments demonstrate state-of-the-art conditional generation ability of our model, as well as its excellent representation learning capability and controllability.
Generative models able to synthesize layouts of different kinds (e.g. documents, user interfaces or furniture arrangements) are a useful tool to aid design processes and as a first step in the generation of synthetic data, among other tasks. We exploit the properties of self-attention layers to capture high level relationships between elements in a layout, and use these as the building blocks of the well-known Variational Autoencoder (VAE) formulation. Our proposed Variational Transformer Network (VTN) is capable of learning margins, alignments and other global design rules without explicit supervision. Layouts sampled from our model have a high degree of resemblance to the training data, while demonstrating appealing diversity. In an extensive evaluation on publicly available benchmarks for different layout types VTNs achieve state-of-the-art diversity and perceptual quality. Additionally, we show the capabilities of this method as part of a document layout detection pipeline.
This paper proposes a new model, called condition-transforming variational autoencoder (CTVAE), to improve the performance of conversation response generation using conditional variational autoencoders (CVAEs). In conventional CVAEs , the prior distribution of latent variable z follows a multivariate Gaussian distribution with mean and variance modulated by the input conditions. Previous work found that this distribution tends to become condition independent in practical application. In our proposed CTVAE model, the latent variable z is sampled by performing a non-lineartransformation on the combination of the input conditions and the samples from a condition-independent prior distribution N (0; I). In our objective evaluations, the CTVAE model outperforms the CVAE model on fluency metrics and surpasses a sequence-to-sequence (Seq2Seq) model on diversity metrics. In subjective preference tests, our proposed CTVAE model performs significantly better than CVAE and Seq2Seq models on generating fluency, informative and topic relevant responses.
Medical dialogue generation aims to provide automatic and accurate responses to assist physicians to obtain diagnosis and treatment suggestions in an efficient manner. In medical dialogues two key characteristics are relevant for response generation: patient states (such as symptoms, medication) and physician actions (such as diagnosis, treatments). In medical scenarios large-scale human annotations are usually not available, due to the high costs and privacy requirements. Hence, current approaches to medical dialogue generation typically do not explicitly account for patient states and physician actions, and focus on implicit representation instead. We propose an end-to-end variational reasoning approach to medical dialogue generation. To be able to deal with a limited amount of labeled data, we introduce both patient state and physician action as latent variables with categorical priors for explicit patient state tracking and physician policy learning, respectively. We propose a variational Bayesian generative approach to approximate posterior distributions over patient states and physician actions. We use an efficient stochastic gradient variational Bayes estimator to optimize the derived evidence lower bound, where a 2-stage collapsed inference method is proposed to reduce the bias during model training. A physician policy network composed of an action-classifier and two reasoning detectors is proposed for augmented reasoning ability. We conduct experiments on three datasets collected from medical platforms. Our experimental results show that the proposed method outperforms state-of-the-art baselines in terms of objective and subjective evaluation metrics. Our experiments also indicate that our proposed semi-supervised reasoning method achieves a comparable performance as state-of-the-art fully supervised learning baselines for physician policy learning.
Cross-domain natural language generation (NLG) is still a difficult task within spoken dialogue modelling. Given a semantic representation provided by the dialogue manager, the language generator should generate sentences that convey desired information. Traditional template-based generators can produce sentences with all necessary information, but these sentences are not sufficiently diverse. With RNN-based models, the diversity of the generated sentences can be high, however, in the process some information is lost. In this work, we improve an RNN-based generator by considering latent information at the sentence level during generation using the conditional variational autoencoder architecture. We demonstrate that our model outperforms the original RNN-based generator, while yielding highly diverse sentences. In addition, our model performs better when the training data is limited.