Do you want to publish a course? Click here

Cyclic thermo-mechanical performance of granular beds: Effect of elastoplasticity

123   0   0.0 ( 0 )
 Added by Si Suo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the coupled thermo-mechanical behaviour of compacted granular beds can benefit various industrial applications, such as pebble bed design in fusion reactors. In this study, a thermo-mechanical discrete element method based on our previous work is improved and adapted to investigate the cyclic thermo-mechanical performance of gas-filled granular materials composed of elastoplastic grains. An interparticle contact model is developed considering the plastic deformation of grains. Through the simulation on a representative volume element of beryllium pebble beds, we provide grain-scale insight into the evolution of thermal conductivity and stress. The simulation results suggest that the network of thermal contacts is impeded by plastic deformation leading to a significant drop of thermal conductivity during cooling. This effect can be suppressed by increasing the initial packing factor. Not limited to pebble bed design, the conclusion of this work can also pave the way for optimizing powder-based manufacturing and energy storage, where combined thermo-mechanical loading conditions and elastoplastic deformation of individual particles are involved.



rate research

Read More

We investigate the mechanical behavior of a confined granular packing of irregular polyhedral particles under repeated heating and cooling cycles by means of numerical simulations with the Non-Smooth Contact Dynamics method. Assuming a homogeneous temperature distribution as well as constant temperature rate, we study the effect of the container shape, and coefficients of thermal expansions on the pressure buildup at the confining walls and the density evolution. We observe that small changes in the opening angle of the confinement can lead to a drastic peak pressure reduction. Furthermore, the displacement fields over several thermal cycles are obtained and we discover the formation of convection cells inside the granular material having the shape of a torus. The root mean square of the vorticity is then calculated from the displacement fields and a quadratic dependency on the ratio of thermal expansion coefficients is established.
We measure the drag encountered by a vertically oriented rod moving across a sedimented granular bed immersed in a fluid under steady-state conditions. At low rod speeds, the presence of the fluid leads to a lower drag because of buoyancy, whereas a significantly higher drag is observed with increasing speeds. The drag as a function of depth is observed to decrease from being quadratic at low speeds to appearing more linear at higher speeds. By scaling the drag with the average weight of the grains acting on the rod, we obtain the effective friction $mu_e$ encountered over six orders of magnitude of speeds. While a constant $mu_e$ is found when the grain size, rod depth and fluid viscosity are varied at low speeds, a systematic increase is observed as the speed is increased. We analyze $mu_e$ in terms of the inertial number $I$ and viscous number $J$ to understand the relative importance of inertia and viscous forces, respectively. For sufficiently large fluid viscosities, we find that the effect of varying the speed, depth, and viscosity can be described by the empirical function $mu_e = mu_o + k J^n$, where $mu_o$ is the effective friction measured in the quasi-static limit, and $k$ and $n$ are material constants. The drag is then analyzed in terms of the effective viscosity $eta_e$ and found to decrease systematically as a function of $J$. We further show that $eta_e$ as a function of $J$ is directly proportional to the fluid viscosity and the $mu_e$ encountered by the rod.
We examine the impact of a solid sphere into a fine-grained granular bed. Using high-speed X-ray radiography we track both the motion of the sphere and local changes in the bed packing fraction. Varying the initial packing density as well as the ambient gas pressure, we find a complete reversal in the effect of interstitial gas on the impact response of the bed: The dynamic coupling between gas and grains allows for easier penetration in initially loose beds but impedes penetration in more densely packed beds. High-speed imaging of the local packing density shows that these seemingly incongruous effects have a common origin in the resistance to bed packing changes caused by interstitial air.
140 - Zhifeng Li , Zhikun Zeng , Yi Xing 2020
We present an X-ray tomography study of the segregation mechanisms of tracer particles in a three-dimensional cyclically sheared bi-disperse granular medium. Big tracers are dragged by convection to rise to the top surface and then remain trapped there due to the small downward convection cross-section, which leads to segregation. Additionally, we also find that the local structural up-down asymmetry due to arching effect around big tracers will induce the tracers to have a net upward displacement against its smaller neighbors, which is another mechanism for segregation.
We employ a novel fluid-particle model to study the shearing behavior of granular soils under different saturation levels, ranging from the dry material via the capillary bridge regime to higher saturation levels with percolating clusters. The full complexity of possible liquid morphologies is taken into account, implying the formation of isolated arbitrary-sized liquid clusters with individual Laplace pressures that evolve by liquid exchange via films on the grain surface. Liquid clusters can grow in size, shrink, merge and split, depending on local conditions, changes of accessible liquid and the pore space morphology determined by the granular phase. This phase is represented by a discrete particle model based on Contact Dynamics, where capillary forces exerted from a liquid phase add to the motion of spherical particles. We study the macroscopic response of the system due to an external compression force at various liquid contents with the help of triaxial shear tests. Additionally, the change in liquid cluster distributions during the compression due to the deformation of the pore space is evaluated close to the critical load.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا