Do you want to publish a course? Click here

The role of interstitial gas in determining the impact response of granular beds

214   0   0.0 ( 0 )
 Added by John Royer
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the impact of a solid sphere into a fine-grained granular bed. Using high-speed X-ray radiography we track both the motion of the sphere and local changes in the bed packing fraction. Varying the initial packing density as well as the ambient gas pressure, we find a complete reversal in the effect of interstitial gas on the impact response of the bed: The dynamic coupling between gas and grains allows for easier penetration in initially loose beds but impedes penetration in more densely packed beds. High-speed imaging of the local packing density shows that these seemingly incongruous effects have a common origin in the resistance to bed packing changes caused by interstitial air.



rate research

Read More

Impact of an intruder on granular matter leads to formation of mesoscopic force networks seen particularly clearly in the recent experiments carried out with photoelastic particles, e.g., Clark et al., Phys. Rev. Lett., 114 144502 (2015). These force networks are characterized by complex structure and evolve on fast time scales. While it is known that total photoelastic activity in the granular system is correlated with the acceleration of the intruder, it is not known how the structure of the force network evolves during impact, and if there is a dominant features in the networks that can be used to describe intruders dynamics. Here, we use topological tools, in particular persistent homology, to describe these features. Persistent homology allows quantification of both structure and time evolution of the resulting force networks. We find that there is a clear correlation of the intruders dynamics and some of the topological measures implemented. This finding allows us to discuss which properties of the force networks are most important when attempting to describe intruders dynamics. Regarding temporal evolution of the networks, we are able to define the upper bound on the relevant time scale on which the networks evolve.
We measure the drag encountered by a vertically oriented rod moving across a sedimented granular bed immersed in a fluid under steady-state conditions. At low rod speeds, the presence of the fluid leads to a lower drag because of buoyancy, whereas a significantly higher drag is observed with increasing speeds. The drag as a function of depth is observed to decrease from being quadratic at low speeds to appearing more linear at higher speeds. By scaling the drag with the average weight of the grains acting on the rod, we obtain the effective friction $mu_e$ encountered over six orders of magnitude of speeds. While a constant $mu_e$ is found when the grain size, rod depth and fluid viscosity are varied at low speeds, a systematic increase is observed as the speed is increased. We analyze $mu_e$ in terms of the inertial number $I$ and viscous number $J$ to understand the relative importance of inertia and viscous forces, respectively. For sufficiently large fluid viscosities, we find that the effect of varying the speed, depth, and viscosity can be described by the empirical function $mu_e = mu_o + k J^n$, where $mu_o$ is the effective friction measured in the quasi-static limit, and $k$ and $n$ are material constants. The drag is then analyzed in terms of the effective viscosity $eta_e$ and found to decrease systematically as a function of $J$. We further show that $eta_e$ as a function of $J$ is directly proportional to the fluid viscosity and the $mu_e$ encountered by the rod.
We investigate the mechanical behavior of a confined granular packing of irregular polyhedral particles under repeated heating and cooling cycles by means of numerical simulations with the Non-Smooth Contact Dynamics method. Assuming a homogeneous temperature distribution as well as constant temperature rate, we study the effect of the container shape, and coefficients of thermal expansions on the pressure buildup at the confining walls and the density evolution. We observe that small changes in the opening angle of the confinement can lead to a drastic peak pressure reduction. Furthermore, the displacement fields over several thermal cycles are obtained and we discover the formation of convection cells inside the granular material having the shape of a torus. The root mean square of the vorticity is then calculated from the displacement fields and a quadratic dependency on the ratio of thermal expansion coefficients is established.
Understanding the coupled thermo-mechanical behaviour of compacted granular beds can benefit various industrial applications, such as pebble bed design in fusion reactors. In this study, a thermo-mechanical discrete element method based on our previous work is improved and adapted to investigate the cyclic thermo-mechanical performance of gas-filled granular materials composed of elastoplastic grains. An interparticle contact model is developed considering the plastic deformation of grains. Through the simulation on a representative volume element of beryllium pebble beds, we provide grain-scale insight into the evolution of thermal conductivity and stress. The simulation results suggest that the network of thermal contacts is impeded by plastic deformation leading to a significant drop of thermal conductivity during cooling. This effect can be suppressed by increasing the initial packing factor. Not limited to pebble bed design, the conclusion of this work can also pave the way for optimizing powder-based manufacturing and energy storage, where combined thermo-mechanical loading conditions and elastoplastic deformation of individual particles are involved.
105 - B. Sanchez-Rey , A. Prados 2020
We analyse the linear response properties of the uniformly heated granular gas. The intensity of the stochastic driving fixes the value of the granular temperature in the non-equilibrium steady state reached by the system. Here, we investigate two specific situations. First, we look into the ``direct relaxation of the system after a single (small) jump of the driving intensity. This study is carried out by two different methods. Not only do we linearise the evolution equations around the steady state, but also derive generalised out-of-equilibrium fluctuation-dissipation relations for the relevant response functions. Second, we investigate the behaviour of the system in a more complex experiment, specifically a Kovacs-like protocol with two jumps in the driving. The emergence of anomalous Kovacs response is explained in terms of the properties of the direct relaxation function: it is the second mode changing sign at the critical value of the inelasticity that demarcates anomalous from normal behaviour. The analytical results are compared with numerical simulations of the kinetic equation, and a good agreement is found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا