No Arabic abstract
Using van der Waals tunnel junctions, we perform spectroscopy of superconducting $mathrm{NbSe_2}$ flakes, of thicknesses ranging from 2--25 monolayers, measuring the quasiparticle density of states as a function of applied in-plane magnetic field up to 33T. In flakes up to $approx$ 15 monolayers thick, we find that the density of states is well-described by a single band superconductor. In these thin samples, the magnetic field acts primarily on the spin (vs orbital) degree of freedom of the electrons, and superconductivity is further protected by Ising spin-orbit coupling (ISOC), which pins Cooper pair spins out-of-plane. The superconducting energy gap, extracted from our tunnelling spectra, decreases as a function of the applied magnetic field. However, in bilayer $mathrm{NbSe_2}$, close to the critical field (up to 30T, much larger than the Pauli limit), superconductivity appears to be even more robust than expected if only ISOC is considered. This can be explained by a predicted subdominant triplet component of the order parameter, coupled to the dominant singlet component at finite field. This equal-spin, odd-parity triplet state arises from the non-colinearity between the applied magnetic field and the Ising field.
Recent studies on superconductivity in NbSe$_2$ have demonstrated a large anisotropy in the superconducting critical field when the material is reduced to a single monolayer. Motivated by this recent discovery, we use density functional theory (DFT) calculations to quantitatively address the superconducting properties of bulk and monolayer NbSe$_2$. We demonstrate that NbSe$_2$ is close to a ferromagnetic instability, and analyze our results in the context of experimental measurements of the spin susceptibility in NbSe$_2$. We show how this magnetic instability, which is pronounced in a single monolayer, can enable sizeable singlet-triplet mixing of the superconducting order parameter, contrary to contemporary considerations of the pairing symmetry in monolayer NbSe$_2$, and discuss approaches as to how this degree of mixing can be addressed quantitatively within our DFT framework. Our calculations also enable a quantitative description of the large anisotropy of the superconducting critical field, using DFT calculations of monolayer NbSe$_2$ in the normal state
Crystalline two-dimensional (2D) superconductors with low carrier density are an exciting new class of materials in which superconductivity coexists with strong interactions, the effects of complex topology are not obscured by disorder, and electronic properties can be strongly tuned by electrostatic gating. Very recently, two such materials, magic-angle twisted bilayer graphene and monolayer $T_d$-WTe$_2$, have been reported to show superconductivity at temperatures near 1 K. Here we report superconductivity in semimetallic monolayer $T_d$-MoTe$_2$. The critical temperature $T_textrm{c}$ reaches 8 K, a sixty-fold enhancement as compared to the bulk. This anomalous increase in $T_textrm{c}$ is only observed in monolayers, and may be indicative of electronically mediated pairing. Reflecting the low carrier density, the critical temperature, magnetic field, and current density are all tunable by an applied gate voltage, revealing a superconducting dome that extends across both hole and electron pockets. The temperature dependence of the in-plane upper critical field is distinct from that of $2H$ transition metal dichalcogenides (TMDs), consistent with a tilted spin texture as predicted by textit{ab initio} theory.
Thin transition metal dichalcogenides sustain superconductivity at large in-plane magnetic fields due to Ising spin-orbit protection, which locks their spins in an out-of-plane orientation. Here we use thin NbSe$_2$ as superconducting electrodes laterally coupled to graphene, making a planar, all van der Waals two-dimensional Josephson junction (2DJJ). We map out the behavior of these novel devices with respect to temperature, gate voltage, and both out-of-plane and in-plane magnetic fields. Notably, the 2DJJs sustain supercurrent up to $H_parallel$ as high as 8.5 T, where the Zeeman energy $E_Z$ rivals the Thouless energy $E_{Th}$, a regime hitherto inaccessible in graphene. As the parallel magnetic field $H_parallel$ increases, the 2DJJs critical current is suppressed and in a few cases undergoes suppression and recovery. We explore the behavior in $H_parallel$ by considering theoretically two effects: a 0-$pi$ transition induced by tuning of the Zeeman energy and the unique effect of ripples in an atomically thin layer which create a small spatially varying perpendicular component of the field. The 2DJJs have potential utility as flexible probes for two-dimensional superconductivity in a variety of materials and introduce high $H_parallel$ as a newly accessible experimental knob.
Two-dimensional transition metal dichalcogenides (TMDs) have been attracting significant interest due to a range of properties, such as layer-dependent inversion symmetry, valley-contrasted Berry curvatures, and strong spin-orbit coupling (SOC). Of particular interest is niobium diselenide (NbSe2), whose superconducting state in few-layer samples is profoundly affected by an unusual type of SOC called Ising SOC. Combined with the reduced dimensionality, the latter stabilizes the superconducting state against magnetic fields up to ~35 T and could lead to other exotic properties such as nodal and crystalline topological superconductivity. Here, we report transport measurements of few-layer NbSe$_2$ under in-plane external magnetic fields, revealing an unexpected two-fold rotational symmetry of the superconducting state. In contrast to the three-fold symmetry of the lattice, we observe that the magnetoresistance and critical field exhibit a two-fold oscillation with respect to an applied in-plane magnetic field. We find similar two-fold oscillations deep inside the superconducting state in differential conductance measurements on NbSe$_2$/CrBr$_3$ superconductor-magnet junctions. In both cases, the anisotropy vanishes in the normal state, demonstrating that it is an intrinsic property of the superconducting phase. We attribute the behavior to the mixing between two closely competing pairing instabilities, namely, the conventional s-wave instability typical of bulk NbSe$_2$ and an unconventional d- or p-wave channel that emerges in few-layer NbSe2. Our results thus demonstrate the unconventional character of the pairing interaction in a few-layer TMD, opening a new avenue to search for exotic superconductivity in this family of 2D materials.
Unconventional superconductivity and in particular triplet superconductivity have been front and center of topological materials and quantum technology research. Here we report our observation of triplet superconductivity in nonmagnetic CoSi$_2$/TiSi$_2$ heterostructures on silicon. CoSi$_2$ undergoes a sharp superconducting transition at a critical temperature $T_c approx$ 1.5 K, while TiSi$_2$ is a normal metal. We investigate conductance spectra of both two-terminal CoSi$_2$/TiSi$_2$ tunnel junctions and three-terminal T-shaped CoSi$_2$/TiSi$_2$ superconducting proximity structures. We report an unexpectedly large spin-orbit coupling in CoSi$_2$ heterostructures. Below $T_c$, we observe (1) a narrow zero-bias conductance peak on top of a broad hump, accompanied by two symmetric side dips in the tunnel junctions, (2) a narrow zero-bias conductance peak in T-shaped structures, and (3) hysteresis in the junction magnetoresistance. These three independent and complementary observations are indicative of chiral $p$-wave pairing in CoSi$_2$/TiSi$_2$ heterostructures. This chiral triplet superconductivity and the excellent fabrication compatibility of CoSi$_2$ and TiSi$_2$ with present-day silicon integrated-circuit technology facilitate full scalability for potential use in quantum-computing devices.