No Arabic abstract
Interference between light waves is one of the widely known phenomena in physics, which is widely used in modern optics, ranging from precise detection at the nanoscale to gravitational-wave observation. Akin to light, both classical and quantum interferences between surface plasmon polaritons (SPPs) have been demonstrated. However, to actively control the SPP interference within subcycle in time (usually less than several femtoseconds in the visible range) is still missing, which hinders the ultimate manipulation of SPP interference on ultrafast time scale. In this paper, the interference between SPPs launched by a hole dimer, which was excited by a grazing incident free electron beam without direct contact, was manipulated through both propagation and initial phase difference control. Particularly, using cathodoluminescence spectroscopy, the appearance of higher-order interference orders was obtained through propagation phase control by increasing separation distances of the dimer. Meanwhile, the peak-valley-peak evolution at a certain wavelength through changing the accelerating voltages was observed, which originates from the initial phase difference control of hole launched SPPs. In particular, the time resolution of this kind of control is shown to be in the ultrafast attosecond (as) region. Our work suggests that fast electron beams can be an efficient tool to control polarition interference in subcycle temporal scale, which can be potentially used in ultrafast optical processing or sensing.
Holography relies on the interference between a known reference and a signal of interest to reconstruct both the amplitude and phase of that signal. Commonly performed with photons and electrons, it finds numerous applications in imaging, cryptography and arts. With electrons, the extension of holography to the ultrafast time domain remains a challenge, although it would yield the highest possible combined spatio-temporal resolution. Here, we show that holograms of local electromagnetic fields can be obtained with combined attosecond/nanometer resolution in an ultrafast transmission electron microscope (UEM). Unlike conventional holography, where the signal and the reference are spatially separated and then recombined to interfere, in our method we use electromagnetic fields to split an electron wave function in a quantum coherent superposition of different energy states. In the image plane, spatial modulation of the electron-energy distribution reflects the phase relation between reference and signal fields, which we map via energy-filtered UEM. Beyond imaging applications, this approach allows implementing optically-controlled and spatially-resolved quantum measurements in parallel, providing an efficient and versatile tool for the exploration of electron quantum optics.
Launching of surface plasmons by swift electrons has long been utilized in electron-energy-loss spectroscopy (EELS) to investigate plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, its spatio-temporal process has never been revealed. This is because the impact of an electron will generate not only plasmons, but also photons, whose emission cannot be achieved at a single space-time point, as fundamentally determined from the uncertainty principle. Here, we propose that such a space-time limitation also applies to surface plasmon generation in EELS experiment. On the platform of graphene, we demonstrate within the framework of classical electrodynamics that the launching of 2D plasmons by an electrons impact is delayed after a hydrodynamic splashing-like process, which occurs during the plasmonic formation time when the electron traverses the formation zone. Considering this newly revealed process, we show that previous estimates on the yields of graphene plasmons in EELS have been overestimated.
Interference patterns of surface plasmon polaritons(SPPs) are observed in the extraordinary optical transmission through subwavelength holes in optically thick metal plate. It is found that the phase of incident light can be transferred to SPPs. We can control the destructive and constructive interference of SPPs by modulating the relative phase between two incident beams. Using a slightly displaced Mach-Zehnder interferometer, we also observe a SPPs interference pattern composed of bright and dark stripes.
A hybrid metal-graphene metamaterial (MM) is reported to achieve the active control of the broadband plasmon-induced transparency (PIT) in THz region. The unit cell consists of one cut wire (CW), four U-shape resonators (USRs) and monolayer graphene sheets under the USRs. Via near-field coupling, broadband PIT can be produced through the interference between different modes. Based on different arrangements of graphene positions, not only can we achieve electrically switching the amplitude of broadband PIT, but also can realize modulating the bandwidth of the transparent window. Simultaneously, both the capability and region of slow light can be dynamically tunable. This work provides schemes to manipulate PIT with more degrees of freedom, which will find significant applications in multifunctional THz modulation.
We introduce a new method for performing ultrafast imaging and tracking of surface plasmon wave packets that propagate on metal films. We demonstrate the efficiency of leakage radiation microscopy implemented in the time domain for measuring both group and phase velocities of near-field pulses with a high level of precision. The versatility of our far-field imaging method is particularly appealing in the context of ultrafast near-field optics.