Do you want to publish a course? Click here

On Strong Data-Processing and Majorization Inequalities with Applications to Coding Problems

139   0   0.0 ( 0 )
 Added by Igal Sason
 Publication date 2021
and research's language is English
 Authors Igal Sason




Ask ChatGPT about the research

This work provides data-processing and majorization inequalities for $f$-divergences, and it considers some of their applications to coding problems. This work also provides tight bounds on the R{e}nyi entropy of a function of a discrete random variable with a finite number of possible values, where the considered function is not one-to-one, and their derivation is based on majorization and the Schur-concavity of the R{e}nyi entropy. One application of the $f$-divergence inequalities refers to the performance analysis of list decoding with either fixed or variable list sizes; some earlier bounds on the list decoding error probability are reproduced in a unified way, and new bounds are obtained and exemplified numerically. Another application is related to a study of the quality of approximating a probability mass function, which is induced by the leaves of a Tunstall tree, by an equiprobable distribution. The compression rates of finite-length Tunstall codes are further analyzed for asserting their closeness to the Shannon entropy of a memoryless and stationary discrete source. In view of the tight bounds for the R{e}nyi entropy and the work by Campbell, non-asymptotic bounds are derived for lossless data compression of discrete memoryless sources.



rate research

Read More

259 - Igal Sason 2019
This paper is focused on derivations of data-processing and majorization inequalities for $f$-divergences, and their applications in information theory and statistics. For the accessibility of the material, the main results are first introduced without proofs, followed by exemplifications of the theorems with further related analytical results, interpretations, and information-theoretic applications. One application refers to the performance analysis of list decoding with either fixed or variable list sizes; some earlier bounds on the list decoding error probability are reproduced in a unified way, and new bounds are obtained and exemplified numerically. Another application is related to a study of the quality of approximating a probability mass function, induced by the leaves of a Tunstall tree, by an equiprobable distribution. The compression rates of finite-length Tunstall codes are further analyzed for asserting their closeness to the Shannon entropy of a memoryless and stationary discrete source. Almost all the analysis is relegated to the appendices, which form a major part of this manuscript.
63 - Igal Sason 2018
This paper provides tight bounds on the Renyi entropy of a function of a discrete random variable with a finite number of possible values, where the considered function is not one-to-one. To that end, a tight lower bound on the Renyi entropy of a discrete random variable with a finite support is derived as a function of the size of the support, and the ratio of the maximal to minimal probability masses. This work was inspired by the recently published paper by Cicalese et al., which is focused on the Shannon entropy, and it strengthens and generalizes the results of that paper to Renyi entropies of arbitrary positive orders. In view of these generalized bounds and the works by Arikan and Campbell, non-asymptotic bounds are derived for guessing moments and lossless data compression of discrete memoryless sources.
Symmetrical multilevel diversity coding (SMDC) is a classical model for coding over distributed storage. In this setting, a simple separate encoding strategy known as superposition coding was shown to be optimal in terms of achieving the minimum sum rate (Roche, Yeung, and Hau, 1997) and the entire admissible rate region (Yeung and Zhang, 1999) of the problem. The proofs utilized carefully constructed induction arguments, for which the classical subset entropy inequality of Han (1978) played a key role. This paper includes two parts. In the first part the existing optimality proofs for classical SMDC are revisited, with a focus on their connections to subset entropy inequalities. First, a new sliding-window subset entropy inequality is introduced and then used to establish the optimality of superposition coding for achieving the minimum sum rate under a weaker source-reconstruction requirement. Second, a subset entropy inequality recently proved by Madiman and Tetali (2010) is used to develop a new structural understanding to the proof of Yeung and Zhang on the optimality of superposition coding for achieving the entire admissible rate region. Building on the connections between classical SMDC and the subset entropy inequalities developed in the first part, in the second part the optimality of superposition coding is further extended to the cases where there is either an additional all-access encoder (SMDC-A) or an additional secrecy constraint (S-SMDC).
We give a unified treatment of some inequalities that are used in the proofs of channel polarization theorems involving a binary-input discrete memoryless channel.
Recently, Martinez-Penas and Kschischang (IEEE Trans. Inf. Theory, 2019) showed that lifted linearized Reed-Solomon codes are suitable codes for error control in multishot network coding. We show how to construct and decode lifted interleaved linearized Reed-Solomon codes. Compared to the construction by Martinez-Penas-Kschischang, interleaving allows to increase the decoding region significantly (especially w.r.t. the number of insertions) and decreases the overhead due to the lifting (i.e., increases the code rate), at the cost of an increased packet size. The proposed decoder is a list decoder that can also be interpreted as a probabilistic unique decoder. Although our best upper bound on the list size is exponential, we present a heuristic argument and simulation results that indicate that the list size is in fact one for most channel realizations up to the maximal decoding radius.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا