Do you want to publish a course? Click here

Decoding of Interleaved Linearized Reed-Solomon Codes with Applications to Network Coding

82   0   0.0 ( 0 )
 Added by Hannes Bartz
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, Martinez-Penas and Kschischang (IEEE Trans. Inf. Theory, 2019) showed that lifted linearized Reed-Solomon codes are suitable codes for error control in multishot network coding. We show how to construct and decode lifted interleaved linearized Reed-Solomon codes. Compared to the construction by Martinez-Penas-Kschischang, interleaving allows to increase the decoding region significantly (especially w.r.t. the number of insertions) and decreases the overhead due to the lifting (i.e., increases the code rate), at the cost of an increased packet size. The proposed decoder is a list decoder that can also be interpreted as a probabilistic unique decoder. Although our best upper bound on the list size is exponential, we present a heuristic argument and simulation results that indicate that the list size is in fact one for most channel realizations up to the maximal decoding radius.



rate research

Read More

Linearized Reed-Solomon (LRS) codes are sum-rank metric codes that fulfill the Singleton bound with equality. In the two extreme cases of the sum-rank metric, they coincide with Reed-Solomon codes (Hamming metric) and Gabidulin codes (rank metric). List decoding in these extreme cases is well-studied, and the two code classes behave very differently in terms of list size, but nothing is known for the general case. In this paper, we derive a lower bound on the list size for LRS codes, which is, for a large class of LRS codes, exponential directly above the Johnson radius. Furthermore, we show that some families of linearized Reed-Solomon codes with constant numbers of blocks cannot be list decoded beyond the unique decoding radius.
Guo, Kopparty and Sudan have initiated the study of error-correcting codes derived by lifting of affine-invariant codes. Lifted Reed-Solomon (RS) codes are defined as the evaluation of polynomials in a vector space over a field by requiring their restriction to every line in the space to be a codeword of the RS code. In this paper, we investigate lifted RS codes and discuss their application to batch codes, a notion introduced in the context of private information retrieval and load-balancing in distributed storage systems. First, we improve the estimate of the code rate of lifted RS codes for lifting parameter $mge 3$ and large field size. Second, a new explicit construction of batch codes utilizing lifted RS codes is proposed. For some parameter regimes, our codes have a better trade-off between parameters than previously known batch codes.
In this article, we present a new construction of evaluation codes in the Hamming metric, which we call twisted Reed-Solomon codes. Whereas Reed-Solomon (RS) codes are MDS codes, this need not be the case for twisted RS codes. Nonetheless, we show that our construction yields several families of MDS codes. Further, for a large subclass of (MDS) twisted RS codes, we show that the new codes are not generalized RS codes. To achieve this, we use properties of Schur squares of codes as well as an explicit description of the dual of a large subclass of our codes. We conclude the paper with a description of a decoder, that performs very well in practice as shown by extensive simulation results.
Interleaved Reed-Solomon codes admit efficient decoding algorithms which correct burst errors far beyond half the minimum distance in the random errors regime, e.g., by computing a common solution to the Key Equation for each Reed-Solomon code, as described by Schmidt et al. This decoder may either fail to return a codeword, or it may miscorrect to an incorrect codeword, and good upper bounds on the fraction of error matrices for which these events occur are known. The decoding algorithm immediately applies to interleaved alternant codes as well, i.e., the subfield subcodes of interleaved Reed-Solomon codes, but the fraction of decodable error matrices differs, since the error is now restricted to a subfield. In this paper, we present new general lower and upper bounds on the fraction of error matrices decodable by Schmidt et al.s decoding algorithm, thereby making it the only decoding algorithm for interleaved alternant codes for which such bounds are known.
Generalized Goppa codes are defined by a code locator set $mathcal{L}$ of polynomials and a Goppa polynomial $G(x)$. When the degree of all code locator polynomials in $mathcal{L}$ is one, generalized Goppa codes are classical Goppa codes. In this work, binary generalized Goppa codes are investigated. First, a parity-check matrix for these codes with code locators of any degree is derived. A careful selection of the code locators leads to a lower bound on the minimum Hamming distance of generalized Goppa codes which improves upon previously known bounds. A quadratic-time decoding algorithm is presented which can decode errors up to half of the minimum distance. Interleaved generalized Goppa codes are introduced and a joint decoding algorithm is presented which can decode errors beyond half the minimum distance with high probability. Finally, some code parameters and how they apply to the Classic McEliece post-quantum cryptosystem are shown.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا