No Arabic abstract
We present Atacama Large Millimeter/submillimeter Array (ALMA) gas and dust observations at band 7 (339~GHz: 0.89~mm) of the protoplanetary disk around a very low mass star ZZ~Tau~IRS with a spatial resolution of 0farcs25. The $^{12}$CO~$J=3rightarrow2$ position--velocity diagram suggests a dynamical mass of ZZ~Tau~IRS of $sim$0.1--0.3~$M_{sun}$. The disk has a total flux density of 273.9 mJy, corresponding to an estimated mass of 24--50~$M_oplus$ in dust. The dust emission map shows a ring at $r=$ 58~au and an azimuthal asymmetry at $r=$ jh{45}~au with a position angle of 135degr. The properties of the asymmetry, including radial width, aspect ratio, contrast, and contribution to the total flux, were found to be similar to the asymmetries around intermediate mass stars ($sim$2~$M_{sun}$) such as MWC~758 and IRS~48. This implies that the asymmetry in the ZZ~Tau~IRS disk shares a similar origin with others, despite the star being $sim$10 times less massive. Our observations also suggest that the inner and outer parts of the disk may be misaligned. Overall, the ZZ~Tau~IRS disk shows evidence of giant planet formation at $sim$10 au scale at a few Myr. If confirmed, it will challenge existing core accretion models, in which such planets have been predicted to be extremely hard to form around very low mass stars.
Context. Transition disks (TDs) are circumstellar disks with inner regions highly depleted in dust. TDs are observed in a small fraction of disk-bearing objects at ages of 1-10 Myr. They are important laboratories to study evolutionary effects in disks, from photoevaporation to planet-disk interactions. Aims. We report the discovery of a large inner dust-empty region in the disk around the very low mass star CIDA 1 (M$_{star} sim 0.1-0.2$ M$_{odot}$). Methods. We used ALMA continuum observations at 887$mu$m, which provide a spatial resolution of $0.21times0.12$ ($sim$15$times$8 au in radius at 140 pc). Results. The data show a dusty ring with a clear cavity of radius $sim$20 au, the typical characteristic of a TD. The emission in the ring is well described by a narrow Gaussian profile. The dust mass in the disk is $sim$17 M$_{oplus}$. CIDA 1 is one of the lowest mass stars with a clearly detected millimeter cavity. When compared to objects of similar stellar mass, it has a relatively massive dusty disk (less than $sim5$% of Taurus Class II disks in Taurus have a ratio of $M_{rm{disk}}/M_{star}$ larger than CIDA 1) and a very high mass accretion rate (CIDA 1 is a disk with one of the lowest values of $M_{rm{disk}}/dot M$ ever observed). In light of these unusual parameters, we discuss a number of possible mechanisms that can be responsible for the formation of the dust cavity (e.g., photoevaporation, dead zones, embedded planets, close binary). We find that an embedded planet of a Saturn mass or a close binary are the most likely possibilities.
The combination of high resolution and sensitivity offered by ALMA is revolutionizing our understanding of protoplanetary discs, as their bulk gas and dust distributions can be studied independently. In this paper we present resolved ALMA observations of the continuum emission ($lambda=1.3$ mm) and CO isotopologues ($^{12}$CO, $^{13}$CO, C$^{18}$O $J=2-1$) integrated intensity from the disc around the nearby ($d = 162$ pc), intermediate mass ($M_{star}=1.67,M_{odot}$) pre-main-sequence star CQ Tau. The data show an inner depression in continuum, and in both $^{13}$CO and C$^{18}$O emission. We employ a thermo-chemical model of the disc reproducing both continuum and gas radial intensity profiles, together with the disc SED. The models show that a gas inner cavity with size between 15 and 25 au is needed to reproduce the data with a density depletion factor between $sim 10^{-1}$ and $sim 10^{-3}$. The radial profile of the distinct cavity in the dust continuum is described by a Gaussian ring centered at $R_{rm dust}=53,$au and with a width of $sigma=13,$au. Three dimensional gas and dust numerical simulations of a disc with an embedded planet at a separation from the central star of $sim20,$au and with a mass of $sim 6textrm{-} 9,M_{rm Jup}$ reproduce qualitatively the gas and dust profiles of the CQ Tau disc. However, a one planet model appears not to be able to reproduce the dust Gaussian density profile predicted using the thermo-chemical modeling.
We report an analysis of the dust disk around DM~Tau, newly observed with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm. The ALMA observations with high sensitivity (8.4~$mu$Jy/beam) and high angular resolution (35~mas, 5.1~au) detect two asymmetries on the ring at $rsim$20~au. They could be two vortices in early evolution, the destruction of a large scale vortex, or double continuum emission peaks with different dust sizes. We also found millimeter emissions with $sim$50~$mu$Jy (a lower limit dust mass of 0.3~$M_{rm Moon}$) inside the 3-au ring. To characterize these emissions, we modeled the spectral energy distribution (SED) of DM~Tau using a Monte Carlo radiative transfer code. We found that an additional ring at $r=$ 1~au could explain both the DM~Tau SED and the central point source. The disk midplane temperature at the 1-au ring calculated in our modeling is less than the typical water sublimation temperature of 150~K, prompting the possibility of forming small icy planets there.
We present ALMA observations of the $^{12}$CO, $^{13}$CO, C$^{18}$O J=2-1 transitions and the 1.3,mm continuum emission for the circumbinary disc around HD 142527, at an angular resolution of $approx$,0farcs3. We observe multiple spiral structures in intensity, velocity and velocity dispersion for the $^{12}$CO and $^{13}$CO gas tracers. A newly detected $^{12}$CO spiral originates from the dust horseshoe, and is rotating at super-Keplerian velocity or vertically ascending, whilst the inter-spiral gas is rotating at sub-Keplerian velocities. This new spiral possibly connects to a previously identified spiral, thus spanning > 360$^circ$. A spatial offset of ~30 au is observed between the $^{12}$CO and $^{13}$CO spirals, to which we hypothesize that the gas layers are propagating at different speeds (``surfing) due to a non-zero vertical temperature gradient. Leveraging the varying optical depths between the CO isotopologues, we reconstruct temperature and column density maps of the outer disc. Gas surface density peaks at r,$approx$,180,au, coincident with the peak of continuum emission. Here the dust grains have a Stokes number of $approx$,1, confirming radial and azimuthal trapping in the horseshoe. We measure a cavity radius at half-maximum surface density of $approx$,100,au, and a cavity eccentricity between 0.3 and 0.45.
We report the discovery of Kepler-77b (alias KOI-127.01), a Saturn-mass transiting planet in a 3.6-day orbit around a metal-rich solar-like star. We combined the publicly available Kepler photometry (quarters 1-13) with high-resolution spectroscopy from the Sandiford@McDonald and FIES@NOT spectrographs. We derived the system parameters via a simultaneous joint fit to the photometric and radial velocity measurements. Our analysis is based on the Bayesian approach and is carried out by sampling the parameter posterior distributions using a Markov chain Monte Carlo simulation. Kepler-77b is a moderately inflated planet with a mass of Mp=0.430+/-0.032 Mjup, a radius of Rp=0.960+/-0.016 Rjup, and a bulk density of 0.603+/-0.055 g/cm^3. It orbits a slowly rotating (P=36+/-6 days) G5V star with M*=0.95+/-0.04 Msun, R*=0.99+/-0.02 Rsun, Teff=5520+/-60 K, [M/H]=0.20+/-0.05, that has an age of 7.5+/-2.0 Gyr. The lack of detectable planetary occultation with a depth higher than about 10 ppm implies a planet geometric and Bond albedo of Ag<0.087+/-0.008 and Ab<0.058+/-0.006, respectively, placing Kepler-77b among the gas-giant planets with the lowest albedo known so far. We found neither additional planetary transit signals nor transit-timing variations at a level of about 0.5 minutes, in accordance with the trend that close-in gas giant planets seem to belong to single-planet systems. The 106 transits observed in short-cadence mode by Kepler for nearly 1.2 years show no detectable signatures of the planets passage in front of starspots. We explored the implications of the absence of detectable spot-crossing events for the inclination of the stellar spin-axis, the sky-projected spin-orbit obliquity, and the latitude of magnetically active regions.