Do you want to publish a course? Click here

Resolved millimeter-dust continuum cavity around the very low mass young star CIDA 1

131   0   0.0 ( 0 )
 Added by Paola Pinilla
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. Transition disks (TDs) are circumstellar disks with inner regions highly depleted in dust. TDs are observed in a small fraction of disk-bearing objects at ages of 1-10 Myr. They are important laboratories to study evolutionary effects in disks, from photoevaporation to planet-disk interactions. Aims. We report the discovery of a large inner dust-empty region in the disk around the very low mass star CIDA 1 (M$_{star} sim 0.1-0.2$ M$_{odot}$). Methods. We used ALMA continuum observations at 887$mu$m, which provide a spatial resolution of $0.21times0.12$ ($sim$15$times$8 au in radius at 140 pc). Results. The data show a dusty ring with a clear cavity of radius $sim$20 au, the typical characteristic of a TD. The emission in the ring is well described by a narrow Gaussian profile. The dust mass in the disk is $sim$17 M$_{oplus}$. CIDA 1 is one of the lowest mass stars with a clearly detected millimeter cavity. When compared to objects of similar stellar mass, it has a relatively massive dusty disk (less than $sim5$% of Taurus Class II disks in Taurus have a ratio of $M_{rm{disk}}/M_{star}$ larger than CIDA 1) and a very high mass accretion rate (CIDA 1 is a disk with one of the lowest values of $M_{rm{disk}}/dot M$ ever observed). In light of these unusual parameters, we discuss a number of possible mechanisms that can be responsible for the formation of the dust cavity (e.g., photoevaporation, dead zones, embedded planets, close binary). We find that an embedded planet of a Saturn mass or a close binary are the most likely possibilities.



rate research

Read More

237 - Jun Hashimoto , Ruobing Dong , 2021
We present Atacama Large Millimeter/submillimeter Array (ALMA) gas and dust observations at band 7 (339~GHz: 0.89~mm) of the protoplanetary disk around a very low mass star ZZ~Tau~IRS with a spatial resolution of 0farcs25. The $^{12}$CO~$J=3rightarrow2$ position--velocity diagram suggests a dynamical mass of ZZ~Tau~IRS of $sim$0.1--0.3~$M_{sun}$. The disk has a total flux density of 273.9 mJy, corresponding to an estimated mass of 24--50~$M_oplus$ in dust. The dust emission map shows a ring at $r=$ 58~au and an azimuthal asymmetry at $r=$ jh{45}~au with a position angle of 135degr. The properties of the asymmetry, including radial width, aspect ratio, contrast, and contribution to the total flux, were found to be similar to the asymmetries around intermediate mass stars ($sim$2~$M_{sun}$) such as MWC~758 and IRS~48. This implies that the asymmetry in the ZZ~Tau~IRS disk shares a similar origin with others, despite the star being $sim$10 times less massive. Our observations also suggest that the inner and outer parts of the disk may be misaligned. Overall, the ZZ~Tau~IRS disk shows evidence of giant planet formation at $sim$10 au scale at a few Myr. If confirmed, it will challenge existing core accretion models, in which such planets have been predicted to be extremely hard to form around very low mass stars.
Observations of protoplanetary disks around very low-mass stars and brown dwarfs remain challenging and little is known about their properties. The disk around CIDA1 ($sim$0.1-0.2$M_odot$) is one of the very few known disks that host a large cavity (20au radius in size) around a very low-mass star. We present new ALMA observations at Band7 (0.9mm) and Band4 (2.1mm) of CIDA1 with a resolution of $sim 0.05times 0.034$. These new ALMA observations reveal a very bright and unresolved inner disk, a shallow spectral index of the dust emission ($sim2$), and a complex morphology of a ring located at 20au. We also present X-Shooter (VLT) observations that confirm the high accretion rate of CIDA1 of $dot{M}_{rm acc}$=1.4 $times~10^{-8}M_odot$/yr. This high value of $dot{M}_{rm acc}$, the observed inner disk, and the large cavity of 20au exclude models of photo-evaporation to explain the observed cavity. When comparing these observations with models that combine planet-disk interaction, dust evolution, and radiative transfer, we exclude planets more massive than 0.5$M_{rm{Jup}}$ as the potential origin of the large cavity because with these it is difficult to maintain a long-lived and bright inner disk. Even in this planet mass regime, an additional physical process may be needed to stop the particles from migrating inwards and to maintain a bright inner disk on timescales of millions of years. Such mechanisms include a trap formed by a very close-in extra planet or the inner edge of a dead zone. The low spectral index of the disk around CIDA1 is difficult to explain and challenges our current dust evolution models, in particular processes like fragmentation, growth, and diffusion of particles inside pressure bumps.
The combination of high resolution and sensitivity offered by ALMA is revolutionizing our understanding of protoplanetary discs, as their bulk gas and dust distributions can be studied independently. In this paper we present resolved ALMA observations of the continuum emission ($lambda=1.3$ mm) and CO isotopologues ($^{12}$CO, $^{13}$CO, C$^{18}$O $J=2-1$) integrated intensity from the disc around the nearby ($d = 162$ pc), intermediate mass ($M_{star}=1.67,M_{odot}$) pre-main-sequence star CQ Tau. The data show an inner depression in continuum, and in both $^{13}$CO and C$^{18}$O emission. We employ a thermo-chemical model of the disc reproducing both continuum and gas radial intensity profiles, together with the disc SED. The models show that a gas inner cavity with size between 15 and 25 au is needed to reproduce the data with a density depletion factor between $sim 10^{-1}$ and $sim 10^{-3}$. The radial profile of the distinct cavity in the dust continuum is described by a Gaussian ring centered at $R_{rm dust}=53,$au and with a width of $sigma=13,$au. Three dimensional gas and dust numerical simulations of a disc with an embedded planet at a separation from the central star of $sim20,$au and with a mass of $sim 6textrm{-} 9,M_{rm Jup}$ reproduce qualitatively the gas and dust profiles of the CQ Tau disc. However, a one planet model appears not to be able to reproduce the dust Gaussian density profile predicted using the thermo-chemical modeling.
We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from the optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on a AU to kilo-AU scale for binaries with young massive stars more luminous than 10^4Lsun, the radiation driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.
192 - Justyn R. Maund 2017
The massive star origins for Type IIP supernovae (SNe) have been established through direct detection of their red supergiants progenitors in pre-explosion observations; however, there has been limited success in the detection of the progenitors of H-deficient SNe. The final fate of more massive stars, capable of undergoing a Wolf-Rayet phase, and the origins of Type Ibc SNe remains debated, including the relative importance of single massive star progenitors or lower mass stars stripped in binaries. We present an analysis of the ages and spatial distributions of massive stars around the sites of 23 stripped-envelope SNe, as observed with the Hubble Space Telescope, to probe the possible origins of the progenitors of these events. Using a Bayesian stellar populations analysis scheme, we find characteristic ages for the populations observed within $150,mathrm{pc}$ of the target Type IIb, Ib and Ic SNe to be $log (t) = 7.20$, $7.05$ and $6.57$, respectively. The Type Ic SNe in the sample are nearly all observed within $100,mathrm{pc}$ of young, dense stellar populations. The environment around SN 2002ap is an important exception both in terms of age and spatial properties. These findings may support the hypothesis that stars with $M_{init} > 30M_{odot}$ produce a relatively large proportion of Type Ibc SNe, and that these SN subtypes arise from progressively more massive progenitors. Significantly higher extinctions are derived towards the populations hosting these SNe than previously used in analysis of constraints from pre-explosion observations. The large initial masses inferred for the progenitors are in stark contrast with the low ejecta masses estimated from SN light curves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا