Do you want to publish a course? Click here

Target Speaker Verification with Selective Auditory Attention for Single and Multi-talker Speech

240   0   0.0 ( 0 )
 Added by Chenglin Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Speaker verification has been studied mostly under the single-talker condition. It is adversely affected in the presence of interference speakers. Inspired by the study on target speaker extraction, e.g., SpEx, we propose a unified speaker verification framework for both single- and multi-talker speech, that is able to pay selective auditory attention to the target speaker. This target speaker verification (tSV) framework jointly optimizes a speaker attention module and a speaker representation module via multi-task learning. We study four different target speaker embedding schemes under the tSV framework. The experimental results show that all four target speaker embedding schemes significantly outperform other competitive solutions for multi-talker speech. Notably, the best tSV speaker embedding scheme achieves 76.0% and 55.3% relative improvements over the baseline system on the WSJ0-2mix-extr and Libri2Mix corpora in terms of equal-error-rate for 2-talker speech, while the performance of tSV for single-talker speech is on par with that of traditional speaker verification system, that is trained and evaluated under the same single-talker condition.



rate research

Read More

In this paper, we study a novel technique that exploits the interaction between speaker traits and linguistic content to improve both speaker verification and utterance verification performance. We implement an idea of speaker-utterance dual attention (SUDA) in a unified neural network. The dual attention refers to an attention mechanism for the two tasks of speaker and utterance verification. The proposed SUDA features an attention mask mechanism to learn the interaction between the speaker and utterance information streams. This helps to focus only on the required information for respective task by masking the irrelevant counterparts. The studies conducted on RSR2015 corpus confirm that the proposed SUDA outperforms the framework without attention mask as well as several competitive systems for both speaker and utterance verification.
This work presents a novel back-end framework for speaker verification using graph attention networks. Segment-wise speaker embeddings extracted from multiple crops within an utterance are interpreted as node representations of a graph. The proposed framework inputs segment-wise speaker embeddings from an enrollment and a test utterance and directly outputs a similarity score. We first construct a graph using segment-wise speaker embeddings and then input these to graph attention networks. After a few graph attention layers with residual connections, each node is projected into a one-dimensional space using affine transform, followed by a readout operation resulting in a scalar similarity score. To enable successful adaptation for speaker verification, we propose techniques such as separating trainable weights for attention map calculations between segment-wise speaker embeddings from different utterances. The effectiveness of the proposed framework is validated using three different speaker embedding extractors trained with different architectures and objective functions. Experimental results demonstrate consistent improvement over various baseline back-end classifiers, with an average equal error rate improvement of 20% over the cosine similarity back-end without test time augmentation.
Attention-based models have recently shown great performance on a range of tasks, such as speech recognition, machine translation, and image captioning due to their ability to summarize relevant information that expands through the entire length of an input sequence. In this paper, we analyze the usage of attention mechanisms to the problem of sequence summarization in our end-to-end text-dependent speaker recognition system. We explore different topologies and their variants of the attention layer, and compare different pooling methods on the attention weights. Ultimately, we show that attention-based models can improves the Equal Error Rate (EER) of our speaker verification system by relatively 14% compared to our non-attention LSTM baseline model.
109 - Cong Han , Yi Luo , Chenda Li 2020
Leveraging additional speaker information to facilitate speech separation has received increasing attention in recent years. Recent research includes extracting target speech by using the target speakers voice snippet and jointly separating all participating speakers by using a pool of additional speaker signals, which is known as speech separation using speaker inventory (SSUSI). However, all these systems ideally assume that the pre-enrolled speaker signals are available and are only evaluated on simple data configurations. In realistic multi-talker conversations, the speech signal contains a large proportion of non-overlapped regions, where we can derive robust speaker embedding of individual talkers. In this work, we adopt the SSUSI model in long recordings and propose a self-informed, clustering-based inventory forming scheme for long recording, where the speaker inventory is fully built from the input signal without the need for external speaker signals. Experiment results on simulated noisy reverberant long recording datasets show that the proposed method can significantly improve the separation performance across various conditions.
The performance of speaker verification systems degrades when vocal effort conditions between enrollment and test (e.g., shouted vs. normal speech) are different. This is a potential situation in non-cooperative speaker verification tasks. In this paper, we present a study on different methods for linear compensation of embeddings making use of Gaussian mixture models to cluster shouted and normal speech domains. These compensation techniques are borrowed from the area of robustness for automatic speech recognition and, in this work, we apply them to compensate the mismatch between shouted and normal conditions in speaker verification. Before compensation, shouted condition is automatically detected by means of logistic regression. The process is computationally light and it is performed in the back-end of an x-vector system. Experimental results show that applying the proposed approach in the presence of vocal effort mismatch yields up to 13.8% equal error rate relative improvement with respect to a system that applies neither shouted speech detection nor compensation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا