Do you want to publish a course? Click here

Speaker-Utterance Dual Attention for Speaker and Utterance Verification

156   0   0.0 ( 0 )
 Added by Tianchi Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we study a novel technique that exploits the interaction between speaker traits and linguistic content to improve both speaker verification and utterance verification performance. We implement an idea of speaker-utterance dual attention (SUDA) in a unified neural network. The dual attention refers to an attention mechanism for the two tasks of speaker and utterance verification. The proposed SUDA features an attention mask mechanism to learn the interaction between the speaker and utterance information streams. This helps to focus only on the required information for respective task by masking the irrelevant counterparts. The studies conducted on RSR2015 corpus confirm that the proposed SUDA outperforms the framework without attention mask as well as several competitive systems for both speaker and utterance verification.



rate research

Read More

This work presents a novel back-end framework for speaker verification using graph attention networks. Segment-wise speaker embeddings extracted from multiple crops within an utterance are interpreted as node representations of a graph. The proposed framework inputs segment-wise speaker embeddings from an enrollment and a test utterance and directly outputs a similarity score. We first construct a graph using segment-wise speaker embeddings and then input these to graph attention networks. After a few graph attention layers with residual connections, each node is projected into a one-dimensional space using affine transform, followed by a readout operation resulting in a scalar similarity score. To enable successful adaptation for speaker verification, we propose techniques such as separating trainable weights for attention map calculations between segment-wise speaker embeddings from different utterances. The effectiveness of the proposed framework is validated using three different speaker embedding extractors trained with different architectures and objective functions. Experimental results demonstrate consistent improvement over various baseline back-end classifiers, with an average equal error rate improvement of 20% over the cosine similarity back-end without test time augmentation.
In forensic applications, it is very common that only small naturalistic datasets consisting of short utterances in complex or unknown acoustic environments are available. In this study, we propose a pipeline solution to improve speaker verification on a small actual forensic field dataset. By leveraging large-scale out-of-domain datasets, a knowledge distillation based objective function is proposed for teacher-student learning, which is applied for short utterance forensic speaker verification. The objective function collectively considers speaker classification loss, Kullback-Leibler divergence, and similarity of embeddings. In order to advance the trained deep speaker embedding network to be robust for a small target dataset, we introduce a novel strategy to fine-tune the pre-trained student model towards a forensic target domain by utilizing the model as a finetuning start point and a reference in regularization. The proposed approaches are evaluated on the 1st48-UTD forensic corpus, a newly established naturalistic dataset of actual homicide investigations consisting of short utterances recorded in uncontrolled conditions. We show that the proposed objective function can efficiently improve the performance of teacher-student learning on short utterances and that our fine-tuning strategy outperforms the commonly used weight decay method by providing an explicit inductive bias towards the pre-trained model.
Speaker diarization is one of the actively researched topics in audio signal processing and machine learning. Utterance clustering is a critical part of a speaker diarization task. In this study, we aim to improve the performance of utterance clustering by processing multichannel (stereo) audio signals. We generated processed audio signals by combining left- and right-channel audio signals in a few different ways and then extracted embedded features (also called d-vectors) from those processed audio signals. We applied the Gaussian mixture model (GMM) for supervised utterance clustering. In the training phase, we used a parameter sharing GMM to train the model for each speaker. In the testing phase, we selected the speaker with the maximum likelihood as the detected speaker. Results of experiments with real audio recordings of multi-person discussion sessions showed that our proposed method that used multichannel audio signals achieved significantly better performance than a conventional method with mono audio signals.
Attention-based models have recently shown great performance on a range of tasks, such as speech recognition, machine translation, and image captioning due to their ability to summarize relevant information that expands through the entire length of an input sequence. In this paper, we analyze the usage of attention mechanisms to the problem of sequence summarization in our end-to-end text-dependent speaker recognition system. We explore different topologies and their variants of the attention layer, and compare different pooling methods on the attention weights. Ultimately, we show that attention-based models can improves the Equal Error Rate (EER) of our speaker verification system by relatively 14% compared to our non-attention LSTM baseline model.
In this paper, a hierarchical attention network to generate utterance-level embeddings (H-vectors) for speaker identification is proposed. Since different parts of an utterance may have different contributions to speaker identities, the use of hierarchical structure aims to learn speaker related information locally and globally. In the proposed approach, frame-level encoder and attention are applied on segments of an input utterance and generate individual segment vectors. Then, segment level attention is applied on the segment vectors to construct an utterance representation. To evaluate the effectiveness of the proposed approach, NIST SRE 2008 Part1 dataset is used for training, and two datasets, Switchboard Cellular part1 and CallHome American English Speech, are used to evaluate the quality of extracted utterance embeddings on speaker identification and verification tasks. In comparison with two baselines, X-vector, X-vector+Attention, the obtained results show that H-vectors can achieve a significantly better performance. Furthermore, the extracted utterance-level embeddings are more discriminative than the two baselines when mapped into a 2D space using t-SNE.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا