Do you want to publish a course? Click here

Attention-Based Models for Text-Dependent Speaker Verification

85   0   0.0 ( 0 )
 Added by Quan Wang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Attention-based models have recently shown great performance on a range of tasks, such as speech recognition, machine translation, and image captioning due to their ability to summarize relevant information that expands through the entire length of an input sequence. In this paper, we analyze the usage of attention mechanisms to the problem of sequence summarization in our end-to-end text-dependent speaker recognition system. We explore different topologies and their variants of the attention layer, and compare different pooling methods on the attention weights. Ultimately, we show that attention-based models can improves the Equal Error Rate (EER) of our speaker verification system by relatively 14% compared to our non-attention LSTM baseline model.



rate research

Read More

Speaker verification (SV) systems using deep neural network embeddings, so-called the x-vector systems, are becoming popular due to its good performance superior to the i-vector systems. The fusion of these systems provides improved performance benefiting both from the discriminatively trained x-vectors and generative i-vectors capturing distinct speaker characteristics. In this paper, we propose a novel method to include the complementary information of i-vector and x-vector, that is called generative x-vector. The generative x-vector utilizes a transformation model learned from the i-vector and x-vector representations of the background data. Canonical correlation analysis is applied to derive this transformation model, which is later used to transform the standard x-vectors of the enrollment and test segments to the corresponding generative x-vectors. The SV experiments performed on the NIST SRE 2010 dataset demonstrate that the system using generative x-vectors provides considerably better performance than the baseline i-vector and x-vector systems. Furthermore, the generative x-vectors outperform the fusion of i-vector and x-vector systems for long-duration utterances, while yielding comparable results for short-duration utterances.
This work presents a novel back-end framework for speaker verification using graph attention networks. Segment-wise speaker embeddings extracted from multiple crops within an utterance are interpreted as node representations of a graph. The proposed framework inputs segment-wise speaker embeddings from an enrollment and a test utterance and directly outputs a similarity score. We first construct a graph using segment-wise speaker embeddings and then input these to graph attention networks. After a few graph attention layers with residual connections, each node is projected into a one-dimensional space using affine transform, followed by a readout operation resulting in a scalar similarity score. To enable successful adaptation for speaker verification, we propose techniques such as separating trainable weights for attention map calculations between segment-wise speaker embeddings from different utterances. The effectiveness of the proposed framework is validated using three different speaker embedding extractors trained with different architectures and objective functions. Experimental results demonstrate consistent improvement over various baseline back-end classifiers, with an average equal error rate improvement of 20% over the cosine similarity back-end without test time augmentation.
A number of studies have successfully developed speaker verification or presentation attack detection systems. However, studies integrating the two tasks remain in the preliminary stages. In this paper, we propose two approaches for building an integrated system of speaker verification and presentation attack detection: an end-to-end monolithic approach and a back-end modular approach. The first approach simultaneously trains speaker identification, presentation attack detection, and the integrated system using multi-task learning using a common feature. However, through experiments, we hypothesize that the information required for performing speaker verification and presentation attack detection might differ because speaker verification systems try to remove device-specific information from speaker embeddings, while presentation attack detection systems exploit such information. Therefore, we propose a back-end modular approach using a separate deep neural network (DNN) for speaker verification and presentation attack detection. This approach has thee input components: two speaker embeddings (for enrollment and test each) and prediction of presentation attacks. Experiments are conducted using the ASVspoof 2017-v2 dataset, which includes official trials on the integration of speaker verification and presentation attack detection. The proposed back-end approach demonstrates a relative improvement of 21.77% in terms of the equal error rate for integrated trials compared to a conventional speaker verification system.
In this paper, we study a novel technique that exploits the interaction between speaker traits and linguistic content to improve both speaker verification and utterance verification performance. We implement an idea of speaker-utterance dual attention (SUDA) in a unified neural network. The dual attention refers to an attention mechanism for the two tasks of speaker and utterance verification. The proposed SUDA features an attention mask mechanism to learn the interaction between the speaker and utterance information streams. This helps to focus only on the required information for respective task by masking the irrelevant counterparts. The studies conducted on RSR2015 corpus confirm that the proposed SUDA outperforms the framework without attention mask as well as several competitive systems for both speaker and utterance verification.
Forensic audio analysis for speaker verification offers unique challenges due to location/scenario uncertainty and diversity mismatch between reference and naturalistic field recordings. The lack of real naturalistic forensic audio corpora with ground-truth speaker identity represents a major challenge in this field. It is also difficult to directly employ small-scale domain-specific data to train complex neural network architectures due to domain mismatch and loss in performance. Alternatively, cross-domain speaker verification for multiple acoustic environments is a challenging task which could advance research in audio forensics. In this study, we introduce a CRSS-Forensics audio dataset collected in multiple acoustic environments. We pre-train a CNN-based network using the VoxCeleb data, followed by an approach which fine-tunes part of the high-level network layers with clean speech from CRSS-Forensics. Based on this fine-tuned model, we align domain-specific distributions in the embedding space with the discrepancy loss and maximum mean discrepancy (MMD). This maintains effective performance on the clean set, while simultaneously generalizes the model to other acoustic domains. From the results, we demonstrate that diverse acoustic environments affect the speaker verification performance, and that our proposed approach of cross-domain adaptation can significantly improve the results in this scenario.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا