No Arabic abstract
Formation of quantum scars in many-body systems provides a novel mechanism for enhancing coherence of weakly entangled states. At the same time, coherence of edge modes in certain symmetry protected topological (SPT) phases can persist away from the ground state. In this work we show the existence of many-body scars and their implications on bulk coherence in such an SPT phase. To this end, we study the eigenstate properties and the dynamics of an interacting spin-$1/2$ chain with three-site cluster terms hosting a $mathbb{Z}_2 times mathbb{Z}_2$ SPT phase. Focusing on the weakly interacting regime, we find that eigenstates with volume-law entanglement coexist with area-law entangled eigenstates throughout the spectrum. We show that a subset of the latter can be constructed by virtue of repeated cluster excitations on the even or odd sublattice of the chain, resulting in an equidistant tower of states, analogous to the phenomenology of quantum many-body scars. We further demonstrate that these scarred eigenstates support nonthermal expectation values of local cluster operators in the bulk and exhibit signatures of topological order even at finite energy densities. Studying the dynamics for out-of-equilibrium states drawn from the noninteracting cluster basis, we unveil that nonthermalizing bulk dynamics can be observed on long time scales if clusters on odd and even sites are energetically detuned. In this case, cluster excitations remain essentially confined to one of the two sublattices such that inhomogeneous cluster configurations cannot equilibrate and thermalization of the full system is impeded. Our work sheds light on the role of quantum many-body scars in preserving SPT order at finite temperature and the possibility of coherent bulk dynamics in models with SPT order beyond the existence of long-lived edge modes.
A large number of symmetry-protected topological (SPT) phases have been hypothesized for strongly interacting spin-1/2 systems in one dimension. Realizing these SPT phases, however, often demands fine-tunings hard to reach experimentally. And the lack of analytical solutions hinders the understanding of their many-body wave functions. Here we show that two kinds of SPT phases naturally arise for ultracold polar molecules confined in a zigzag optical lattice. This system, motivated by recent experiments, is described by a spin model whose exchange couplings can be tuned by an external field to reach parameter regions not studied before for spin chains or ladders. Within the enlarged parameter space, we find the ground state wave function can be obtained exactly along a line and at a special point, for these two phases respectively. These exact solutions provide a clear physical picture for the SPT phases and their edge excitations. We further obtain the phase diagram by using infinite time-evolving block decimation, and discuss the phase transitions between the two SPT phases and their experimental signatures.
We present a general symmetry-based framework for obtaining many-body Hamiltonians with scarred eigenstates that do not obey the eigenstate thermalization hypothesis. Our models are derived from parent Hamiltonians with a non-Abelian (or q-deformed) symmetry, whose eigenspectra are organized as degenerate multiplets that transform as irreducible representations of the symmetry (`tunnels). We show that large classes of perturbations break the symmetry, but in a manner that preserves a particular low-entanglement multiplet of states -- thereby giving generic, thermal spectra with a `shadow of the broken symmetry in the form of scars. The generators of the Lie algebra furnish operators with `spectrum generating algebras that can be used to lift the degeneracy of the scar states and promote them to equally spaced `towers. Our framework applies to several known models with scars, but we also introduce new models with scars that transform as irreducible representations of symmetries such as SU(3) and $q$-deformed SU(2), significantly generalizing the types of systems known to harbor this phenomenon. Additionally, we present new examples of generalized AKLT models with scar states that do not transform in an irreducible representation of the relevant symmetry. These are derived from parent Hamiltonians with enhanced symmetries, and bring AKLT-like models into our framework.
Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems.
Symmetry is fundamental to topological phases. In the presence of a gauge field, spatial symmetries will be projectively represented, which may alter their algebraic structure and generate novel topological phases. We show that the $mathbb{Z}_2$ projectively represented translational symmetry operators adopt a distinct commutation relation, and become momentum dependent analogous to twofold nonsymmorphic symmetries. Combined with other internal or external symmetries, they give rise to many exotic band topology, such as the degeneracy over the whole boundary of the Brillouin zone, the single fourfold Dirac point pinned at the Brillouin zone corner, and the Kramers degeneracy at every momentum point. Intriguingly, the Dirac point criticality can be lifted by breaking one primitive translation, resulting in a topological insulator phase, where the edge bands have a M{o}bius twist. Our work opens a new arena of research for exploring topological phases protected by projectively represented space groups.
Topology in quantum many-body systems has profoundly changed our understanding of quantum phases of matter. The paradigmatic model that has played an instrumental role in elucidating these effects is the antiferromagnetic spin-1 Haldane chain. Its ground state is a disordered state, with symmetry-protected fourfold-degenerate edge states due to fractional spin excitations. In the bulk, it is characterised by vanishing two-point spin correlations, gapped excitations, and a characteristic non-local order parameter. More recently it was understood that the Haldane chain forms a specific example of a more general classification scheme of symmetry protected topological (SPT) phases of matter that is based on ideas connecting to quantum information and entanglement. Here, we realise such a topological Haldane phase with Fermi-Hubbard ladders in an ultracold-atom quantum simulator. We directly reveal both edge and bulk properties of the system through the use of single-site and particle-resolved measurements as well as non-local correlation functions. Continuously changing the Hubbard interaction strength of the system allows us to investigate the robustness of the phase to charge (density) fluctuations far from the regime of the Heisenberg model employing a novel correlator.