No Arabic abstract
We show that a well behaved Noetherian, finite dimensional, stable, monoidal model category is equivalent to a model built from categories of modules over completed rings in an adelic fashion. For abelian groups this is based on the Hasse square, for chromatic homotopy theory this is based on the chromatic fracture square, and for rational torus-equivariant homotopy theory this is the model of Greenlees-Shipley arXiv:1101.2511.
Given a suitable stable monoidal model category $mathscr{C}$ and a specialization closed subset $V$ of its Balmer spectrum one can produce a Tate square for decomposing objects into the part supported over $V$ and the part supported over $V^c$ spliced with the Tate object. Using this one can show that $mathscr{C}$ is Quillen equivalent to a model built from the data of local torsion objects, and the splicing data lies in a rather rich category. As an application, we promote the torsion model for the homotopy category of rational circle-equivariant spectra from [18] to a Quillen equivalence. In addition, a close analysis of the one step case highlights important features needed for general torsion models which we will return to in future work.
We prove the existence of various adelic-style models for rigidly small-generated tensor-triangulated categories whose Balmer spectrum is a one-dimensional Noetherian topological space. This special case of our general programme of giving adelic models is particularly concrete and accessible, and we illustrate it with examples from algebra, geometry, topology and representation theory.
The goal of the article is to better understand cosupport in triangulated categories since it is still quite mysterious. We study boundedness of local cohomology and local homology functors using Koszul objects, give some characterizations of cosupport and get some results that, in special cases, recover and generalize the known results about the usual cosupport. Also we include some computations of cosupport, settle the comparison of support and cosupport of cohomologically finite objects. Finally, we assign to any object of the category a subset of $mathrm{Spec}R$, called the big cosupport.
We define and systematically study nonassociative C*-algebras as C*-algebras internal to a topological tensor category. We also offer a concrete approach to these C*-algebras, as G-invariant, norm closed *-subalgebras of bounded operators on a G-Hilbert space, with deformed composition product. Our central results are those of stabilization and Takai duality for (twisted) crossed products in this context.
We show that direct limit completions of vertex tensor categories inherit vertex and braided tensor category structures, under conditions that hold for example for all known Virasoro and affine Lie algebra tensor categories. A consequence is that the theory of vertex operator (super)algebra extensions also applies to infinite-order extensions. As an application, we relate rigid and non-degenerate vertex tensor categories of certain modules for both the affine vertex superalgebra of $mathfrak{osp}(1|2)$ and the $N=1$ super Virasoro algebra to categories of Virasoro algebra modules via certain cosets.