Do you want to publish a course? Click here

NLP for Ghanaian Languages

75   0   0.0 ( 0 )
 Added by Salomey Osei
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

NLP Ghana is an open-source non-profit organization aiming to advance the development and adoption of state-of-the-art NLP techniques and digital language tools to Ghanaian languages and problems. In this paper, we first present the motivation and necessity for the efforts of the organization; by introducing some popular Ghanaian languages while presenting the state of NLP in Ghana. We then present the NLP Ghana organization and outline its aims, scope of work, some of the methods employed and contributions made thus far in the NLP community in Ghana.



rate research

Read More

We present skweak, a versatile, Python-based software toolkit enabling NLP developers to apply weak supervision to a wide range of NLP tasks. Weak supervision is an emerging machine learning paradigm based on a simple idea: instead of labelling data points by hand, we use labelling functions derived from domain knowledge to automatically obtain annotations for a given dataset. The resulting labels are then aggregated with a generative model that estimates the accuracy (and possible confusions) of each labelling function. The skweak toolkit makes it easy to implement a large spectrum of labelling functions (such as heuristics, gazetteers, neural models or linguistic constraints) on text data, apply them on a corpus, and aggregate their results in a fully unsupervised fashion. skweak is especially designed to facilitate the use of weak supervision for NLP tasks such as text classification and sequence labelling. We illustrate the use of skweak for NER and sentiment analysis. skweak is released under an open-source license and is available at: https://github.com/NorskRegnesentral/skweak
Data augmentation has recently seen increased interest in NLP due to more work in low-resource domains, new tasks, and the popularity of large-scale neural networks that require large amounts of training data. Despite this recent upsurge, this area is still relatively underexplored, perhaps due to the challenges posed by the discrete nature of language data. In this paper, we present a comprehensive and unifying survey of data augmentation for NLP by summarizing the literature in a structured manner. We first introduce and motivate data augmentation for NLP, and then discuss major methodologically representative approaches. Next, we highlight techniques that are used for popular NLP applications and tasks. We conclude by outlining current challenges and directions for future research. Overall, our paper aims to clarify the landscape of existing literature in data augmentation for NLP and motivate additional work in this area. We also present a GitHub repository with a paper list that will be continuously updated at https://github.com/styfeng/DataAug4NLP
Empirical natural language processing (NLP) systems in application domains (e.g., healthcare, finance, education) involve interoperation among multiple components, ranging from data ingestion, human annotation, to text retrieval, analysis, generation, and visualization. We establish a unified open-source framework to support fast development of such sophisticated NLP workflows in a composable manner. The framework introduces a uniform data representation to encode heterogeneous results by a wide range of NLP tasks. It offers a large repository of processors for NLP tasks, visualization, and annotation, which can be easily assembled with full interoperability under the unified representation. The highly extensible framework allows plugging in custom processors from external off-the-shelf NLP and deep learning libraries. The whole framework is delivered through two modularized yet integratable open-source projects, namely Forte (for workflow infrastructure and NLP function processors) and Stave (for user interaction, visualization, and annotation).
While artificial intelligence provides the backbone for many tools people use around the world, recent work has brought to attention that the algorithms powering AI are not free of politics, stereotypes, and bias. While most work in this area has focused on the ways in which AI can exacerbate existing inequalities and discrimination, very little work has studied how governments actively shape training data. We describe how censorship has affected the development of Wikipedia corpuses, text data which are regularly used for pre-trained inputs into NLP algorithms. We show that word embeddings trained on Baidu Baike, an online Chinese encyclopedia, have very different associations between adjectives and a range of concepts about democracy, freedom, collective action, equality, and people and historical events in China than its regularly blocked but uncensored counterpart - Chinese language Wikipedia. We examine the implications of these discrepancies by studying their use in downstream AI applications. Our paper shows how government repression, censorship, and self-censorship may impact training data and the applications that draw from them.
We take a step towards addressing the under-representation of the African continent in NLP research by creating the first large publicly available high-quality dataset for named entity recognition (NER) in ten African languages, bringing together a variety of stakeholders. We detail characteristics of the languages to help researchers understand the challenges that these languages pose for NER. We analyze our datasets and conduct an extensive empirical evaluation of state-of-the-art methods across both supervised and transfer learning settings. We release the data, code, and models in order to inspire future research on African NLP.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا