Do you want to publish a course? Click here

skweak: Weak Supervision Made Easy for NLP

234   0   0.0 ( 0 )
 Added by Pierre Lison
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present skweak, a versatile, Python-based software toolkit enabling NLP developers to apply weak supervision to a wide range of NLP tasks. Weak supervision is an emerging machine learning paradigm based on a simple idea: instead of labelling data points by hand, we use labelling functions derived from domain knowledge to automatically obtain annotations for a given dataset. The resulting labels are then aggregated with a generative model that estimates the accuracy (and possible confusions) of each labelling function. The skweak toolkit makes it easy to implement a large spectrum of labelling functions (such as heuristics, gazetteers, neural models or linguistic constraints) on text data, apply them on a corpus, and aggregate their results in a fully unsupervised fashion. skweak is especially designed to facilitate the use of weak supervision for NLP tasks such as text classification and sequence labelling. We illustrate the use of skweak for NER and sentiment analysis. skweak is released under an open-source license and is available at: https://github.com/NorskRegnesentral/skweak



rate research

Read More

Automatic question generation according to an answer within the given passage is useful for many applications, such as question answering system, dialogue system, etc. Current neural-based methods mostly take two steps which extract several important sentences based on the candidate answer through manual rules or supervised neural networks and then use an encoder-decoder framework to generate questions about these sentences. These approaches neglect the semantic relations between the answer and the context of the whole passage which is sometimes necessary for answering the question. To address this problem, we propose the Weak Supervision Enhanced Generative Network (WeGen) which automatically discovers relevant features of the passage given the answer span in a weakly supervised manner to improve the quality of generated questions. More specifically, we devise a discriminator, Relation Guider, to capture the relations between the whole passage and the associated answer and then the Multi-Interaction mechanism is deployed to transfer the knowledge dynamically for our question generation system. Experiments show the effectiveness of our method in both automatic evaluations and human evaluations.
Visual imitation learning provides a framework for learning complex manipulation behaviors by leveraging human demonstrations. However, current interfaces for imitation such as kinesthetic teaching or teleoperation prohibitively restrict our ability to efficiently collect large-scale data in the wild. Obtaining such diverse demonstration data is paramount for the generalization of learned skills to novel scenarios. In this work, we present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots. We use commercially available reacher-grabber assistive tools both as a data collection device and as the robots end-effector. To extract action information from these visual demonstrations, we use off-the-shelf Structure from Motion (SfM) techniques in addition to training a finger detection network. We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task. For both tasks, we use standard behavior cloning to learn executable policies from the previously collected offline demonstrations. To improve learning performance, we employ a variety of data augmentations and provide an extensive analysis of its effects. Finally, we demonstrate the utility of our interface by evaluating on real robotic scenarios with previously unseen objects and achieve a 87% success rate on pushing and a 62% success rate on stacking. Robot videos are available at https://dhiraj100892.github.io/Visual-Imitation-Made-Easy.
Data augmentation has recently seen increased interest in NLP due to more work in low-resource domains, new tasks, and the popularity of large-scale neural networks that require large amounts of training data. Despite this recent upsurge, this area is still relatively underexplored, perhaps due to the challenges posed by the discrete nature of language data. In this paper, we present a comprehensive and unifying survey of data augmentation for NLP by summarizing the literature in a structured manner. We first introduce and motivate data augmentation for NLP, and then discuss major methodologically representative approaches. Next, we highlight techniques that are used for popular NLP applications and tasks. We conclude by outlining current challenges and directions for future research. Overall, our paper aims to clarify the landscape of existing literature in data augmentation for NLP and motivate additional work in this area. We also present a GitHub repository with a paper list that will be continuously updated at https://github.com/styfeng/DataAug4NLP
Recently, large-scale transformer-based models have been proven to be effective over a variety of tasks across many domains. Nevertheless, putting them into production is very expensive, requiring comprehensive optimization techniques to reduce inference costs. This paper introduces a series of transformer inference optimization techniques that are both in algorithm level and hardware level. These techniques include a pre-padding decoding mechanism that improves token parallelism for text generation, and highly optimized kernels designed for very long input length and large hidden size. On this basis, we propose a transformer inference acceleration library -- Easy and Efficient Transformer (EET), which has a significant performance improvement over existing libraries. Compared to Faster Transformer v4.0s implementation for GPT-2 layer on A100, EET achieves a 1.5-4.5x state-of-art speedup varying with different context lengths. EET is available at https://github.com/NetEase-FuXi/EET. A demo video is available at https://youtu.be/22UPcNGcErg.
One of the first and easy to use techniques for proving run time bounds for evolutionary algorithms is the so-called method of fitness levels by Wegener. It uses a partition of the search space into a sequence of levels which are traversed by the algorithm in increasing order, possibly skipping levels. An easy, but often strong upper bound for the run time can then be derived by adding the reciprocals of the probabilities to leave the levels (or upper bounds for these). Unfortunately, a similarly effective method for proving lower bounds has not yet been established. The strongest such method, proposed by Sudholt (2013), requires a careful choice of the viscosity parameters $gamma_{i,j}$, $0 le i < j le n$. In this paper we present two new variants of the method, one for upper and one for lower bounds. Besides the level leaving probabilities, they only rely on the probabilities that levels are visited at all. We show that these can be computed or estimated without greater difficulties and apply our method to reprove the following known results in an easy and natural way. (i) The precise run time of the (1+1) EA on textsc{LeadingOnes}. (ii) A lower bound for the run time of the (1+1) EA on textsc{OneMax}, tight apart from an $O(n)$ term. (iii) A lower bound for the run time of the (1+1) EA on long $k$-paths. We also prove a tighter lower bound for the run time of the (1+1) EA on jump functions by showing that, regardless of the jump size, only with probability $O(2^{-n})$ the algorithm can avoid to jump over the valley of low fitness.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا